Optimization of Fracturing Parameters with Machine-Learning and Evolutionary Algorithm Methods

被引:7
|
作者
Dong, Zhenzhen [1 ]
Wu, Lei [1 ]
Wang, Linjun [1 ]
Li, Weirong [1 ]
Wang, Zhengbo [2 ]
Liu, Zhaoxia [2 ]
机构
[1] Xian Shiyou Univ, Dept Petr Engn, Xian 710065, Peoples R China
[2] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
machine learning; evolutionary algorithms; production prediction; net present value; fracturing parameter optimization; RESERVOIR; WELLS; PREDICTION; INSIGHTS;
D O I
10.3390/en15166063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Oil production from tight oil reservoirs has become economically feasible because of the combination of horizontal drilling and multistage hydraulic fracturing. Optimal fracture design plays a critical role in successful economical production from a tight oil reservoir. However, many complex parameters such as fracture spacing and fracture half-length make fracturing treatments costly and uncertain. To improve fracture design, it is essential to determine reasonable ranges for these parameters and to evaluate their effects on well performance and economic feasibility. In traditional analytical and numerical simulation methods, many simplifications and assumptions are introduced for artificial fracture characterization and gas percolation mechanisms, and their implementation process remains complicated and computationally inefficient. Most previous studies on big data-driven fracturing parameter optimization have been based on only a single output, such as expected ultimate recovery, and few studies have integrated machine learning with evolutionary algorithms to optimize fracturing parameters based on time-series production prediction and economic objectives. This study proposed a novel approach, combining a data-driven model with evolutionary optimization algorithms to optimize fracturing parameters. We established a significant number of static and dynamic data sets representing the geological and developmental characteristics of tight oil reservoirs from numerical simulation. Four production-prediction models based on machine-learning methods-support vector machine, gradient-boosted decision tree, random forest, and multilayer perception-were constructed as mapping functions between static properties and dynamic production. Then, to optimize the fracturing parameters, the best machine-learning-based production predictive model was coupled with four evolutionary algorithms-genetic algorithm, differential evolution algorithm, simulated annealing algorithm, and particle swarm optimization-to investigate the highest net present value (NPV). The results show that among the four production-prediction models established, multilayer perception (MLP) has the best prediction performance. Among the evolutionary algorithms, particle swarm optimization (PSO) not only has the fastest convergence speed but also the highest net present value. The optimal fracturing parameters for the study area were identified. The hybrid MLP-PSO model represents a robust and convenient method to forecast the time-series production and to optimize fracturing parameters by reducing manual tuning.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] An evaluation of machine-learning methods for predicting pneumonia mortality
    Cooper, GF
    Aliferis, CF
    Ambrosino, R
    Aronis, J
    Buchanan, BG
    Caruana, R
    Fine, MJ
    Glymour, C
    Gordon, G
    Hanusa, BH
    Janosky, JE
    Meek, C
    Mitchell, T
    Richardson, T
    Spirtes, P
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1997, 9 (02) : 107 - 138
  • [42] Using machine-learning methods for musical style modeling
    Dubnov, S
    Assayag, G
    Lartillot, O
    Bejerano, G
    COMPUTER, 2003, 36 (10) : 73 - +
  • [43] Predicting loss aversion behavior with machine-learning methods
    Ömür Saltık
    Wasim ul Rehman
    Rıdvan Söyü
    Süleyman Değirmen
    Ahmet Şengönül
    Humanities and Social Sciences Communications, 10
  • [44] Predicting loss aversion behavior with machine-learning methods
    Saltik, Omur
    ul Rehman, Wasim
    Soyu, Ridvan
    Degirmen, Suleyman
    Sengonul, Ahmet
    HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2023, 10 (01):
  • [45] Estimation of traffic dynamics models with machine-learning methods
    Antoniou, Constantinos
    Koutsopoulos, Haris N.
    TRAFFIC FLOW THEORY 2006, 2006, (1965): : 103 - 111
  • [46] Machine-learning methods for stream water temperature prediction
    Feigl, Moritz
    Lebiedzinski, Katharina
    Herrnegger, Mathew
    Schulz, Karsten
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (05) : 2951 - 2977
  • [47] A combined evolutionary algorithm for real parameters optimization
    Yang, JM
    Kao, CY
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 732 - 737
  • [48] AN ADAPTIVE EVOLUTIONARY ALGORITHM FOR UWB MICROSTRIP ANTENNAS OPTIMIZATION USING A MACHINE LEARNING TECHNIQUE
    Silva, Claudio R. M.
    Martins, Sinara R.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2013, 55 (08) : 1864 - 1868
  • [49] Prediction and Optimization of Blast Furnace Parameters Based on Machine Learning and Genetic Algorithm
    Li Z.-N.
    Chu M.-S.
    Liu Z.-G.
    Li B.-F.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2020, 41 (09): : 1262 - 1267
  • [50] Inflammation indexes and machine-learning algorithm in predicting urethroplasty success
    Tokuc, Emre
    Eksi, Mithat
    Kayar, Ridvan
    Demir, Samet
    Topaktas, Ramazan
    Bastug, Yavuz
    Akyuz, Mehmet
    Ozturk, Metin
    INVESTIGATIVE AND CLINICAL UROLOGY, 2024, 65 (03) : 240 - 247