A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids

被引:39
|
作者
Fowler, Jonas L. [1 ,2 ]
Ang, Lay Teng [1 ]
Loh, Kyle M. [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Stanford UC Berkeley Siebel Stem Cell Inst, Stanford Inst Stem Cell Biol & Regenerat Med, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med,Maternal & Child Hlth Res Inst, Wu Tsai Neurosci Inst,BioX,Diabet Res Ctr, Dept Dev Biol,Canc Inst,Cardiovasc Inst,ChEM H, Stanford, CA 94305 USA
关键词
developmental biology; germ layer; organoid; pluripotent stem cell; stem cell differentiation; PRIMITIVE STREAK FORMATION; IN-VITRO; HUMAN ES; DIRECTED DIFFERENTIATION; PANCREATIC PROGENITORS; NEURAL PROGENITORS; CEREBRAL ORGANOIDS; FUNCTIONAL-NEURONS; MOUSE EMBRYO; HUMAN LIVER;
D O I
10.1002/wdev.368
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Too many choices can be problematic. This is certainly the case for human pluripotent stem cells (hPSCs): they harbor the potential to differentiate into hundreds of cell types; yet it is highly challenging to exclusively differentiate hPSCs into a single desired cell type. This review focuses on unresolved and fundamental questions regarding hPSC differentiation and critiquing the identity and purity of the resultant cell populations. These are timely issues in view of the fact that hPSC-derived cell populations have or are being transplanted into patients in over 30 ongoing clinical trials. While many in vitro differentiation protocols purport to "mimic development," the exact number and identity of intermediate steps that a pluripotent cell takes to differentiate into a given cell type in vivo remains largely unknown. Consequently, most differentiation efforts inevitably generate a heterogeneous cellular population, as revealed by single-cell RNA-sequencing and other analyses. The presence of unwanted cell types in differentiated hPSC populations does not portend well for transplantation therapies. This provides an impetus to precisely control differentiation to desired ends-for instance, by logically blocking the formation of unwanted cell types or by overexpressing lineage-specifying transcription factors-or by harnessing technologies to selectively purify desired cell types. Conversely, approaches to differentiate three-dimensional "organoids" from hPSCs intentionally generate heterogeneous cell populations. While this is intended to mimic the rich cellular diversity of developing tissues, whether all such organoids are spatially organized in a manner akin to native organs (and thus, whether they fully qualify as organoids) remains to be fully resolved. This article is categorized under: Adult Stem Cells > Tissue Renewal > Regeneration: Stem Cell Differentiation and Reversion Gene Expression > Transcriptional Hierarchies: Cellular Differentiation Early Embryonic Development: Gastrulation and Neurulation
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Alveolar organoids from human pluripotent stem cells: Research and applications
    Hong, Seok-Ho
    TISSUE ENGINEERING PART A, 2022, 28 : 293 - 293
  • [22] Generation of Human Blood Vessel Organoids from Pluripotent Stem Cells
    Werschler, Nicolas
    Penninger, Josef
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (191):
  • [23] Nephrogenesis in kidney organoids derived from human pluripotent stem cells
    Susan J. Allison
    Nature Reviews Nephrology, 2015, 11 (12) : 689 - 689
  • [24] Generation of hepatobiliary organoids from human induced pluripotent stem cells
    Wu, Fenfang
    Wu, Di
    Ren, Yong
    Huang, Yuhua
    Feng, Bo
    Zhao, Nan
    Zhang, Taotao
    Chen, Xiaoni
    Chen, Shangwu
    Xu, Anlong
    JOURNAL OF HEPATOLOGY, 2019, 70 (06) : 1145 - 1158
  • [25] Generation of kidney tubular organoids from human pluripotent stem cells
    Yamaguchi, Shintaro
    Morizane, Ryuji
    Homma, Koichiro
    Monkawa, Toshiaki
    Suzuki, Sayuri
    Fujii, Shizuka
    Koda, Muneaki
    Hiratsuka, Ken
    Yamashita, Maho
    Yoshida, Tadashi
    Wakino, Shu
    Hayashi, Koichi
    Sasaki, Junichi
    Hori, Shingo
    Itoh, Hiroshi
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Generation of lung organoids from human pluripotent stem cells in vitro
    Alyssa J. Miller
    Briana R. Dye
    Daysha Ferrer-Torres
    David R. Hill
    Arend W. Overeem
    Lonnie D. Shea
    Jason R. Spence
    Nature Protocols, 2019, 14 : 518 - 540
  • [27] Transcriptomic analysis of retinal organoids from human pluripotent stem cells
    Jones, Melissa Kaye
    Ogata, Anna R.
    Su, Fei
    Chen, Bolin
    Seid, Justin
    Wahlin, Karl
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [28] Generation of blood vessel organoids from human pluripotent stem cells
    Wimmer, Reiner A.
    Leopoldi, Alexandra
    Aichinger, Martin
    Kerjaschki, Dontscho
    Penninger, Josef M.
    NATURE PROTOCOLS, 2019, 14 (11) : 3082 - 3100
  • [29] Patterning of brain organoids derived from human pluripotent stem cells
    Zhang, Zhijian
    O'Laughlin, Richard
    Song, Hongjun
    Ming, Guo-Li
    CURRENT OPINION IN NEUROBIOLOGY, 2022, 74
  • [30] Generation of functional thymic organoids from human pluripotent stem cells
    Ramos, Stephan A.
    Armitage, Lucas H.
    Morton, John J.
    Alzofon, Nathaniel
    Handler, Diana
    Kelly, Geoffrey
    Homann, Dirk
    Jimeno, Antonio
    Russ, Holger A.
    STEM CELL REPORTS, 2023, 18 (04): : 829 - 840