Magnetic and thermodynamic stability of SU(2) Yang-Mills theory

被引:8
|
作者
Eletsky, VL
Kalloniatis, AC
Lenz, F
Thies, M
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys 3, D-91058 Erlangen, Germany
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 08期
关键词
D O I
10.1103/PhysRevD.57.5010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
SU(2) Yang-Mills theory at finite extension or, equivalently, at finite temperature is probed by a homogeneous chromomagnetic field. We use a recent modified axial gauge formulation which has the novel feature of respecting the center symmetry in perturbation theory. The characteristic properties of the Z(2)-symmetric phase, an extension-dependent mass term and antiperiodic boundary conditions, provide stabilization against magnetic field formation for sufficiently small extension or high temperature. In an extension of this investigation to the deconfined phase with broken center symmetry, the combined constraints of thermodynamic and magnetic stability are shown to yield many of the high temperature properties of lattice SU(2) gauge theory.
引用
收藏
页码:5010 / 5022
页数:13
相关论文
共 50 条
  • [21] GROUND-STATE OF THE SU(2) YANG-MILLS THEORY
    TAKAHASHI, K
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1980, 4 (04): : 301 - 306
  • [22] COMPUTATION OF THE RUNNING COUPLING IN THE SU(2) YANG-MILLS THEORY
    LUSCHER, M
    SOMMER, R
    WOLFF, U
    WEISZ, P
    NUCLEAR PHYSICS B, 1993, 389 (01) : 247 - 264
  • [23] VACUA FOR SU(2) YANG-MILLS
    ANISHETTY, R
    PHYSICS LETTERS B, 1982, 108 (4-5) : 295 - 298
  • [24] ONSET OF CHAOS IN THE CLASSICAL SU(2) YANG-MILLS THEORY
    FURUSAWA, T
    NUCLEAR PHYSICS B, 1987, 290 (04) : 469 - 479
  • [25] Renormalization of SU(2) Yang-Mills theory with flow equations
    Efremov, Alexander N.
    Guida, Riccardo
    Kopper, Christoph
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [26] A new geometric framework for SU(2) Yang-Mills theory
    Turakulov, Z
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 649 - 652
  • [27] Axially symmetric solutions for SU(2) Yang-Mills theory
    Singleton, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) : 4574 - 4583
  • [28] Topological quantization of instantons in SU(2) Yang-Mills theory
    Zhong, Wo-Jun
    Duan, Yi-Shi
    CHINESE PHYSICS LETTERS, 2008, 25 (05) : 1534 - 1537
  • [29] 't Hooft loop in SU(2) Yang-Mills theory
    de Forcrand, P
    D'Elia, M
    Pepe, M
    PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1438 - 1441
  • [30] Divergencies in θ-expanded noncommutative SU(2) Yang-Mills theory
    Buric, M
    Radovanovic, V
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 171 - 180