Unsupervised Federated Learning for Unbalanced Data

被引:21
|
作者
Servetnyk, Mykola [1 ]
Fung, Carrson C. [1 ]
Han, Zhu [2 ]
机构
[1] Natl Chiao Tung Univ, Inst Elect, Hsinchu, Taiwan
[2] Univ Houston, Dept Elect & Comp Engn, Houston, TX USA
关键词
Federated learning; unsupervised learning; dual averaging algorithm; gradient weighting; distributed optimization; self-organizing maps;
D O I
10.1109/GLOBECOM42002.2020.9348203
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work considers unsupervised learning tasks being implemented within the federated learning framework to satisfy stringent requirements for low-latency and privacy of the emerging applications. The proposed algorithm is based on Dual Averaging (DA), where the gradients of each agent are aggregated at a central node. While having its advantages in terms of distributed computation, the accuracy of federated learning training reduces significantly when the data is nonuniformly distributed across devices. Therefore, this work proposes two weight computation algorithms, with one using a fixed size bin and the other with sell-organizing maps (SOM) that solves the underlying dimensionality problem inherent in the first method. Simulation results are also provided to show that the proposed algorithms' performance is comparable to the scenario in which all data is uploaded and processed in the centralized cloud.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Decentralized Online Bandit Federated Learning Over Unbalanced Directed Networks
    Gao, Wang
    Zhao, Zhongyuan
    Wei, Mengli
    Yang, Ju
    Zhang, Xiaogang
    Li, Jinsong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4264 - 4277
  • [32] Learning Decision Trees for Unbalanced Data
    Cieslak, David A.
    Chawla, Nitesh V.
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART I, PROCEEDINGS, 2008, 5211 : 241 - 256
  • [33] Neural Learning from Unbalanced Data
    Yi L. Murphey
    Hong Guo
    Lee A. Feldkamp
    Applied Intelligence, 2004, 21 : 117 - 128
  • [34] Neural learning from unbalanced data
    Murphey, YL
    Guo, H
    Feldkamp, LA
    APPLIED INTELLIGENCE, 2004, 21 (02) : 117 - 128
  • [35] Incremental learning from unbalanced data
    Muhlbaier, M
    Topalis, A
    Polikar, R
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1057 - 1062
  • [36] Incremental Unsupervised Adversarial Domain Adaptation for Federated Learning in IoT Networks
    Huang, Yan
    Du, Mengxuan
    Zheng, Haifeng
    Feng, Xinxin
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 186 - 190
  • [37] How to cope with malicious federated learning clients: An unsupervised learning-based approach
    Onsu, Murat Arda
    Kantarci, Burak
    Boukerche, Azzedine
    COMPUTER NETWORKS, 2023, 234
  • [38] Federated Learning for Data Analytics in Education
    Fachola, Christian
    Tornaria, Agustin
    Bermolen, Paola
    Capdehourat, German
    Etcheverry, Lorena
    Fariello, Maria Ines
    DATA, 2023, 8 (02)
  • [39] Beyond data poisoning in federated learning
    Kasyap, Harsh
    Tripathy, Somanath
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [40] Unsupervised Speaker Diarization in Distributed IoT Networks Using Federated Learning
    Bhuyan, Amit Kumar
    Dutta, Hrishikesh
    Biswas, Subir
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,