Lag Synchronization Criteria for Memristor-Based Coupled Neural Networks via Parameter Mismatches Analysis Approach

被引:15
|
作者
Li, Ning [1 ]
Cao, Jinde [2 ,3 ,4 ]
Alsaedi, Ahmed [5 ]
Alsaadi, Fuad [6 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Res Ctr Complex Syst & Network Sci, Nanjing 210096, Jiangsu, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Nonlinear Anal & Appl Math Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
[6] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
TIME-VARYING DELAYS; MATRIX MEASURE STRATEGIES; EXPONENTIAL SYNCHRONIZATION; ANTI-SYNCHRONIZATION; INTERMITTENT CONTROL; STABILIZATION; DISSIPATIVITY; STABILITY;
D O I
10.1162/NECO_a_00918
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter focuses on lag synchronization control analysis for memristor-based coupled neural networks with parameter mismatches. Due to the parameter mismatches, lag complete synchronization in general cannot be achieved. First, based on the -measure method, generalized Halanay inequality, together with control algorithms, some sufficient conditions are obtained to ensure that coupled memristor-based neural networks are in a state of lag synchronization with an error. Moreover, the error level is estimated. Second, we show that memristor-based coupled neural networks with parameter mismatches can reach lag complete synchronization under a discontinuous controller. Finally, two examples are given to illustrate the effectiveness of the proposed criteria and well support theoretical results.
引用
收藏
页码:1721 / 1744
页数:24
相关论文
共 50 条
  • [21] Synchronization criteria for multiple memristor-based neural networks with time delay and inertial term
    Li, Ning
    Cao, JinDe
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (04) : 612 - 622
  • [22] Novel Switching Jumps Dependent Exponential Synchronization Criteria for Memristor-Based Neural Networks
    Ding, Sanbo
    Wang, Zhanshan
    Huang, Zhanjun
    Zhang, Huaguang
    NEURAL PROCESSING LETTERS, 2017, 45 (01) : 15 - 28
  • [23] Exponential lag function projective synchronization of memristor-based multidirectional associative memory neural networks via hybrid control
    Yuan, Manman
    Wang, Weiping
    Luo, Xiong
    Li, Lixiang
    Kurths, Jurgen
    Wang, Xiao
    MODERN PHYSICS LETTERS B, 2018, 32 (09):
  • [24] Synchronization Control of Coupled Memristor-Based Neural Networks with Mixed Delays and Stochastic Perturbations
    Chuan Chen
    Lixiang Li
    Haipeng Peng
    Yixian Yang
    Tao Li
    Neural Processing Letters, 2018, 47 : 679 - 696
  • [25] Impulsive Synchronization for TS Fuzzy Model of Memristor-based Chaotic Systems with Parameter Mismatches
    Yang, Shiju
    Li, Chuandong
    Huang, Tingwen
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2016, 14 (03) : 854 - 864
  • [26] Synchronization Control of Coupled Memristor-Based Neural Networks with Mixed Delays and Stochastic Perturbations
    Chen, Chuan
    Li, Lixiang
    Peng, Haipeng
    Yang, Yixian
    Li, Tao
    NEURAL PROCESSING LETTERS, 2018, 47 (02) : 679 - 696
  • [27] Impulsive synchronization for TS fuzzy model of memristor-based chaotic systems with parameter mismatches
    Shiju Yang
    Chuandong Li
    Tingwen Huang
    International Journal of Control, Automation and Systems, 2016, 14 : 854 - 864
  • [28] Synchronization Analysis for Stochastic Inertial Memristor-Based Neural Networks with Linear Coupling
    Ye, Lixia
    Xia, Yonghui
    Yan, Jin-liang
    Liu, Haidong
    COMPLEXITY, 2020, 2020
  • [29] Bipartite synchronization for inertia memristor-based neural networks on coopetition networks
    Li, Ning
    Zheng, Wei Xing
    NEURAL NETWORKS, 2020, 124 : 39 - 49
  • [30] Adaptive Synchronization for Delayed Chaotic Memristor-Based Neural Networks
    Xin, Youming
    Cheng, Zunshui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (02) : 601 - 610