Mathematical approach to design 3D scaffolds for the 3D printable bone implant

被引:12
|
作者
Wojnicz, Wiktoria [1 ]
Augustyniak, Marek [2 ]
Borzyszkowski, Piotr [2 ]
机构
[1] Gdansk Univ Technol, Fac Mech Engn & Ship Technol, Gdansk, Poland
[2] Gdansk Univ Technol, Fac Appl Phys & Math, Gdansk, Poland
关键词
Bone; Lattice structure; FEM; 3D printing; Scaffold; FMD; FINITE-ELEMENT-ANALYSIS; LATTICE STRUCTURES; MECHANICAL-PROPERTIES; NUMERICAL-MODEL; OPTIMIZATION; VALIDATION; TI6AL4V;
D O I
10.1016/j.bbe.2021.05.001
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sam-ple). New nine 3D scaffold samples were designed and their numerical models were cre-ated. Using the finite element analysis, a static compression test was performed to assess the effective Young modulus of each tested sample. Also, two important metrics of each sample were assessed: relative density and surface area. Each new designed 3D scaffold sample was analyzed by considering two types of material properties: metal alloy properties (Ti-6Al-4V) and ABS polymer properties. Numerical analysis results of this study confirm that 3D scaffold used to design a periodic structure, either based on interconnected beams (A, B, C, D, E and F units) or made by removing regular shapes from base solid cubes (G, H, I units), can be refined to obtain mechanical properties similar to the ones of trabec-ular bone tissue. Experimental validation was performed on seven scaffolds (A, B, C, D, E, F and H units) printed from ABS material without any support materials by using Fused Deposition Modeling (FMD) technology. Results of experimental Young modulus of each printed scaffold are also presented and discussed. (c) 2021 The Author(s). Published by Elsevier B.V. on behalf of Nalecz Institute of Biocyber-netics and Biomedical Engineering of the Polish Academy of Sciences. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:667 / 678
页数:12
相关论文
共 50 条
  • [41] Optimization of biopolymer additives for 3D printable cementitious systems: A design of experiment approach
    Zafar, Muhammad Saeed
    Shahid, Adnan
    Sedghi, Reza
    Hojati, Maryam
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22
  • [42] Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach
    Roque, Renan
    Barbosa, Gustavo Franco
    Guastaldi, Antonio Carlos
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 64 : 655 - 663
  • [43] Design and 3D bioprinting of interconnected porous scaffolds for bone regeneration. An additive manufacturing approach
    Roque, Renan
    Barbosa, Gustavo Franco
    Guastaldi, Antônio Carlos
    Journal of Manufacturing Processes, 2021, 64 : 655 - 663
  • [44] Review of 3D printable hydrogels and constructs
    Li, Huijun
    Tan, Cavin
    Li, Lin
    MATERIALS & DESIGN, 2018, 159 : 20 - 38
  • [45] Rheological characterization of 3D printable geopolymers
    Ranjbar, Navid
    Mehrali, Mehdi
    Kuenzel, Carsten
    Gundlach, Carsten
    Pedersen, David Bue
    Dolatshahi-Pirouz, Alireza
    Spangenberg, Jon
    CEMENT AND CONCRETE RESEARCH, 2021, 147
  • [46] Mechanical characterization of 3D printable concrete
    Rahul, A., V
    Santhanam, Manu
    Meena, Hitesh
    Ghani, Zimam
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 227
  • [47] 3D bioactive composite scaffolds for bone tissue engineering
    Turnbull, Gareth
    Clarke, Jon
    Picard, Frederic
    Riches, Philip
    Jia, Luanluan
    Han, Fengxuan
    Li, Bin
    Shu, Wenmiao
    BIOACTIVE MATERIALS, 2018, 3 (03) : 278 - 314
  • [48] Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration
    Daskalakis, Evangelos
    Huang, Boyang
    Vyas, Cian
    Acar, Anil Ahmet
    Fallah, Ali
    Cooper, Glen
    Weightman, Andrew
    Koc, Bahattin
    Blunn, Gordon
    Bartolo, Paulo
    POLYMERS, 2022, 14 (03)
  • [49] Test methods for 3D printable concrete
    Kaliyavaradhan, Senthil Kumar
    Ambily, P. S.
    Prem, Prabhat Ranjan
    Ghodke, Swapnil Balasaheb
    AUTOMATION IN CONSTRUCTION, 2022, 142
  • [50] 3D Printable Embedded RF Connectors
    Reese, Malcolm S.
    Heilman, Grant D.
    Doyle, Derek
    Christodoulou, Christos G.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1525 - 1526