Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

被引:14
|
作者
Yoon, Minho [1 ]
Kim, Gyuyong [1 ]
Kim, Youngsun [2 ]
Lee, Taegyu [3 ]
Choe, Gyeongcheol [1 ]
Hwang, Euichul [1 ]
Nam, Jeongsoo [1 ]
机构
[1] Chungnam Natl Univ, Dept Architectural Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Lotte Engn & Construct, Res & Dev Inst, 3 Naruteo Ro 10 Gil, Seoul 06527, South Korea
[3] Daelim Ind Co Ltd, Res & Dev Inst, F16 D1,17 Jongno 3 Gil, Seoul 03155, South Korea
来源
MATERIALS | 2017年 / 10卷 / 07期
关键词
high strength concrete; thermal expansion; total strain; transient creep; high temperature; creep strain; HIGH-PERFORMANCE CONCRETE; MECHANICAL-PROPERTIES; POLYPROPYLENE FIBERS; REINFORCED-CONCRETE; AGGREGATE; FIRE; COLUMNS;
D O I
10.3390/ma10070781
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 degrees C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f(cu). It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 degrees C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Residual Compressive Strength of High-Strength Concrete Exposed to Elevated Temperatures
    Elsanadedy, Hussein M.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2019, 2019
  • [12] Fibre reinforced high strength concrete subjected to elevated temperatures
    Varona, Francisco de Borja
    Baeza, Francisco Javier
    Ivorra, Salvador
    Bru, David
    4TH INTERNATIONAL CONFERENCE ON MECHANICAL MODELS IN STRUCTURAL ENGINEERING (CMMOST 2017), 2017, : 653 - 666
  • [13] Performance of High Strength Concrete Subjected to Elevated Temperatures: A Review
    Shah, S. N. R.
    Akashah, F. W.
    Shafigh, P.
    FIRE TECHNOLOGY, 2019, 55 (05) : 1571 - 1597
  • [14] Performance of High Strength Concrete Subjected to Elevated Temperatures: A Review
    S. N. R. Shah
    F. W. Akashah
    P. Shafigh
    Fire Technology, 2019, 55 : 1571 - 1597
  • [15] Fracture behavior of high-strength steels at elevated temperatures
    Cai, Wen-Yu
    Jiang, Jian
    Wang, Yan-Bo
    Li, Guo-Qiang
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 175
  • [16] Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature
    Wu, Chung-Hao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (19) : 10657 - 10669
  • [17] Bond behavior between circular steel tube and high-strength concrete after elevated temperatures
    Zhou, Ji
    Chen, Zongpin
    Ban, Maogen
    Pang, Yunsheng
    STRUCTURAL ENGINEERING AND MECHANICS, 2022, 84 (05) : 575 - 590
  • [18] Behavior of high-strength concrete columns subjected to blast loading
    Ngo, TD
    Mendis, PA
    Teo, D
    Kusuma, G
    ADVANCES IN STRUCTURES, VOLS 1 AND 2, 2003, : 1057 - 1063
  • [19] Constitutive Relationships for Normal- and High-Strength Concrete at Elevated Temperatures
    Aslani, Farhad
    Bastami, Morteza
    ACI MATERIALS JOURNAL, 2011, 108 (04) : 355 - 364
  • [20] Stress-strain behaviour of high-strength concrete at elevated temperatures
    Fu, YF
    Wong, YL
    Poon, CS
    Tang, CA
    MAGAZINE OF CONCRETE RESEARCH, 2005, 57 (09) : 535 - 544