Snake Segmentation of Multiple Sclerosis Lesions for Assisted Diagnosis by Cluster Analysis-Based Techniques

被引:0
|
作者
Bonanno, Lilla [1 ]
Lanzafame, Pietro [1 ]
Celona, Alessandro [1 ]
Marino, Silvia [1 ]
Spano, Barbara [1 ]
Bramanti, Placido [1 ]
Puccio, Luigia
机构
[1] IRCCS Ctr Neurolesi Bonino Pulejo, I-98124 Messina, Italy
关键词
Magnetic Resonance Imaging; Multiple Sclerosis; Snake; Cluster Analysis; GRADIENT VECTOR FLOW; MYOTONIC-DYSTROPHY; MRI FINDINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Magnetic Resonance Imaging (MRI), allowing in-vivo detection of lesions, is today a crucial tool for diagnosis of Multiple Sclerosis (MS). Although the detection of lesions are not sufficient for a diagnosis of MS because of similarity with patterns detected in other neurological diseases, taking into account different radiological informations, MRI findings can often yield a high degree of confidence. We used a snake based procedure for segmentation of lesion then proposing a method based on Cluster Analysis to support clinicians in the diagnosis of MS. By identifying a minimum set of significant descriptors, our algorithm can help neurologist and neuroimaging expert to distinguish MS plaques from other kinds of lesions.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 50 条
  • [21] Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images
    Sadeghibakhi, Mehdi
    Pourreza, Hamidreza
    Mahyar, Hamidreza
    IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10
  • [22] Segmentation method of multiple sclerosis lesions based on 3D-CNN networks
    Xiang, Yan
    Liu, Han
    Wang, Shuo
    Ma, Lei
    Xiong, Xin
    Xu, Chunrong
    Shao, Dangguo
    IET IMAGE PROCESSING, 2020, 14 (09) : 1806 - 1812
  • [23] A topological data analysis-based method for gait signals with an application to the study of multiple sclerosis
    Bois, Alexandre
    Tervil, Brian
    Moreau, Albane
    Vienne-Jumeau, Alienor
    Ricard, Damien
    Oudre, Laurent
    PLOS ONE, 2022, 17 (05):
  • [24] Artificial intelligence techniques in the diagnosis of multiple sclerosis
    Dalla Costa, G.
    Di Maggio, G.
    Moiola, L.
    Leocani, L.
    Furlan, R.
    Filippi, M.
    Comi, G.
    Martinelli, V.
    JOURNAL OF NEUROLOGY, 2014, 261 : S91 - S92
  • [25] Artificial intelligence techniques in the diagnosis of multiple sclerosis
    Costa, G. Dalla
    Di Maggio, G.
    Moiola, L.
    Leocani, L.
    Furlan, R.
    Filippi, M.
    Comi, G.
    Martinelli, V.
    EUROPEAN JOURNAL OF NEUROLOGY, 2014, 21 : 128 - 128
  • [26] Multiple sclerosis lesions: insights from imaging techniques
    Tomassini, Valentina
    Palace, Jacqueline
    EXPERT REVIEW OF NEUROTHERAPEUTICS, 2009, 9 (09) : 1341 - 1359
  • [27] A method for segmentation of multiple sclerosis lesions on magnetic resonance images
    Storelli, L.
    Rocca, M. A.
    Preziosa, P.
    Pagani, E.
    Filippi, M.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 193 - 193
  • [28] Improved probabilistic segmentation of white matter lesions in multiple sclerosis
    Lommers, E.
    Delrue, G.
    Reuter, G.
    Calay, P.
    Delvaux, V.
    Hansen, I.
    Dive, D.
    Maquet, P.
    Phillips, C.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 677 - 677
  • [29] Automatic segmentation of multiple sclerosis lesions from MRI slices
    Taleb-Ahmed, A
    Lethuc, V
    Michel, TS
    Ayachi, M
    Pruvo, JP
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 627 - 631
  • [30] Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI
    Johnston, B
    Atkins, MS
    Mackiewich, B
    Anderson, M
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (02) : 154 - 169