Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage

被引:1
|
作者
Chen, Xike [1 ]
Yamashita, Akihiro [1 ]
Morioka, Miho [1 ]
Senba, Toshika [1 ]
Kamatani, Takashi [1 ]
Watanabe, Akira [2 ]
Kosai, Azuma [1 ]
Tsumaki, Noriyuki [1 ]
机构
[1] Kyoto Univ, Dept Clin Applicat, Ctr iPS Cell Res & Applicat, Cell Induct & Regulat Field, Kyoto, Japan
[2] Kyoto Univ, Dept Life Sci Frontiers, Ctr iPS Cell Res & Applicat, Kyoto, Japan
关键词
cartilage; iPS cells; perichondrium; FGF; chondrocyte; SKELETAL DYSPLASIA; GENE-EXPRESSION; CHONDROCYTES;
D O I
10.1089/ten.tea.2018.0133
中图分类号
Q813 [细胞工程];
学科分类号
摘要
New cell and tissue sources are needed for the regenerative treatment of articular cartilage damage. Human induced pluripotent stem cells (hiPSCs) are an abundant cell source due to their self-renewal capacity. Hyaline cartilage tissue particles derived from hiPSCs (hiPS-Carts), 1-3mm in diameter, are one candidate source that can be used for transplantation. When transplanted to fill the defects of articular cartilage, hiPS-Carts form a repair tissue by integrating with each other and with adjacent host tissue. In this study, we analyzed the integration capacity using an in vitro model and found that hiPS-Carts spontaneously integrate with each other in vitro. hiPS-Carts consist of cartilage at the center and perichondrium-like membrane that wraps around the cartilage. The integration started at the perichondrium-like membrane at around 1 week. Then, the integration progressed to the cartilage within 4-8 weeks. RNA sequencing analysis identified a higher expression of FGF18 in the perichondrium-like membrane in hiPS-Carts compared with the central cartilage. The addition of FGF18 to the model accelerated the integration of hiPS-Carts, whereas the addition of a FGFR inhibitor inhibited it. These results suggest that FGF18 secreted from the perichondrium-like membrane plays a role in the integration of hiPS-Carts. Understanding the integration mechanism of hiPS-Carts is expected to contribute to the realization of regenerative treatment for patients with articular cartilage damage.
引用
收藏
页码:437 / 445
页数:9
相关论文
共 50 条
  • [31] Induced pluripotent stem cell-derived macrophages as a platform for modelling human disease
    Tiwari, Satish Kumar
    Wong, Wei Jie
    Moreira, Marco
    Pasqualini, Claudia
    Ginhoux, Florent
    NATURE REVIEWS IMMUNOLOGY, 2025, 25 (02) : 108 - 124
  • [32] A Human Induced Pluripotent Stem Cell-derived Cardiomyocyte Model of Pompe Disease
    Raval, Kunil K.
    Koonce, Chad H.
    Zhang, Jianhua
    Yu, Junying
    Kamp, Timothy
    Thomson, James A.
    CIRCULATION, 2010, 122 (21)
  • [33] Human induced pluripotent stem cell-derived macrophages ameliorate liver fibrosis
    Pouyanfard, Somayeh
    Meshgin, Nairika
    Cruz, Luisjesus S.
    Diggle, Karin
    Hashemi, Hamidreza
    Pham, Timothy, V
    Fierro, Manuel
    Tamayo, Pablo
    Fanjul, Andrea
    Kisseleva, Tatiana
    Kaufman, Dan S.
    STEM CELLS, 2021, 39 (12) : 1701 - 1717
  • [34] Modeling and simulation of human induced pluripotent stem cell-derived cardiac tissue
    Jung A.
    Staat M.
    GAMM Mitteilungen, 2019, 42 (04)
  • [35] Human induced pluripotent stem cell-derived beating cardiac tissues on paper
    Wang, Li
    Xu, Cong
    Zhu, Yujuan
    Yu, Yue
    Sun, Ning
    Zhang, Xiaoqing
    Feng, Ke
    Qin, Jianhua
    LAB ON A CHIP, 2015, 15 (22) : 4283 - 4290
  • [36] Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes
    De Assuncao, Thiago M.
    Sun, Yan
    Jalan-Sakrikar, Nidhi
    Drinane, Mary C.
    Huang, Bing Q.
    Li, Ying
    Davila, Jaime I.
    Wang, Ruisi
    O'Hara, Steven P.
    Lomberk, Gwen A.
    Urrutia, Raul A.
    Ikeda, Yasuhiro
    Huebert, Robert C.
    LABORATORY INVESTIGATION, 2015, 95 (06) : 684 - 696
  • [37] Functional Analysis of Human Induced Pluripotent Stem Cell-Derived Cardiac Myocytes
    Wheelwright, Matthew
    Win, Zaw
    Alford, Patrick W.
    Metzger, Joseph M.
    MOLECULAR THERAPY, 2015, 23 : S75 - S75
  • [38] The response of human induced pluripotent stem cell-derived chondrocytes to ionizing radiation
    Augustyniak, E.
    Suchorska, W. M.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S992 - S993
  • [39] Generation of Human Induced Pluripotent Stem Cell-Derived Bone Marrow Organoids
    Frenz, Stephanie
    Goek, Isabel
    Buser, Maximilian
    Salewskij, Kirill
    Fairley, Savannah
    Conca, Raffaele
    Drexler, Nicole
    Jonsson, Gustav
    Thomas, Moritz
    Mizoguchi, Yoko
    Rudelius, Martina
    Heuser, Thomas
    Marr, Carsten
    Penninger, Josef M.
    Klein, Christoph
    BLOOD, 2022, 140 : 1682 - 1683
  • [40] Functional Characterization of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells
    Fan, Xuehui
    Cyganek, Lukas
    Nitschke, Katja
    Uhlig, Stefanie
    Nuhn, Philipp
    Bieback, Karen
    Duerschmied, Daniel
    El-Battrawy, Ibrahim
    Zhou, Xiaobo
    Akin, Ibrahim
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)