Side-Channel Leakage through Static Power Should We Care about in Practice?

被引:0
|
作者
Moradi, Amir [1 ]
机构
[1] Ruhr Univ Bochum, Horst Gortz Inst IT Secur, Bochum, Germany
关键词
S-BOX;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
By shrinking the technology static power consumption of CMOS circuits is becoming a major concern. In this paper, we present the first practical results of exploiting static power consumption of FPGA-based cryptographic devices in order to mount a key-recovery side-channel attack. The experiments represented here are based on three Xilinx FPGAs built on 65 nm, 45 nm, and 28 nm process technologies. By means of a sophisticated measurement setup and methodology we demonstrate an exploitable information leakage through static power of the underlying FPGAs. The current work highlights the feasibility of side-channel analysis attacks by static power that have been known for years but have not been performed and investigated in practice yet. This is a starting point for further research investigations, and may have a significant impact on the efficiency of DPA countermeasures in the near future.
引用
收藏
页码:562 / 579
页数:18
相关论文
共 50 条
  • [41] Preprocessing of the Physical Leakage Information to Combine Side-Channel Distinguishers
    Seckiner, Soner
    Kose, Selcuk
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2021, 29 (12) : 2052 - 2063
  • [42] Optimal strategies for side-channel leakage in FCFS packet schedulers
    Shintre, Saurabh
    Gligor, Virgil
    Barros, Joao
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2515 - 2519
  • [43] Rassle: Return address stack based side-channel leakage
    Chakraborty, Anirban
    Bhattacharya, Sarani
    Alam, Manaar
    Patranabis, Sikhar
    Mukhopadhyay, Debdeep
    IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 2021 (02): : 275 - 303
  • [44] Leakage Assessment Methodology A Clear Roadmap for Side-Channel Evaluations
    Schneider, Tobias
    Moradi, Amir
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2015, 2015, 9293 : 495 - 513
  • [45] Exploiting the microarchitectural leakage of prefetching activities for side-channel attacks
    Xiao, Chong
    Tang, Ming
    Guilley, Sylvain
    JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 139
  • [46] Impacts of HLS Optimizations on Side-Channel Leakage for AES Circuits
    Mizuno, Takumi
    Zhang, Qidi
    Nishikawa, Hiroki
    Kong, Xiangbo
    Tomiyama, Hiroyuki
    18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, : 53 - 54
  • [47] Electromagnetic Information Leakage for Side-Channel Analysis of Cryptographic Modules
    Homma, Naofumi
    Aoki, Takafumi
    Satoh, Akashi
    2010 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC 2010), 2010, : 97 - 102
  • [48] Leakage Prototype Learning for Profiled Differential Side-Channel Cryptanalysis
    Bartkewitz, Timo
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (06) : 1761 - 1774
  • [49] EMShepherd: Detecting Adversarial Samples via Side-channel Leakage
    Ding, Ruyi
    Cheng Gongye
    Wang, Siyue
    Ding, Aidong Adam
    Fei, Yunsi
    PROCEEDINGS OF THE 2023 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ASIA CCS 2023, 2023, : 300 - 313
  • [50] Side-Channel Attacks With Multi-Thread Mixed Leakage
    Gao, Yiwen
    Zhou, Yongbin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 770 - 785