Stochastic Modeling of Extreme Precipitation: a Regional Approach

被引:1
|
作者
Bolgov, M. V. [1 ]
Filippova, I. A. [1 ]
Trubetskova, M. D. [1 ]
Osipova, N. V. [1 ]
机构
[1] Russian Acad Sci, Water Problems Inst, Moscow 119333, Russia
关键词
maximum possible precipitation; truncation; security curve; threshold method; GEV-distribution; PROBABLE MAXIMUM PRECIPITATION;
D O I
10.1134/S0097807819080025
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
A generalized step-by-step statistical method for calculating the maximal precipitation sums of low probability is proposed. The method is applied to the case of daily precipitation for the Amur River basin. Refined statistical characteristics of maximum daily precipitation for the warm period are obtained. A map of daily precipitation of 1% exceedance probability is compiled over the territory of the Amur River. The obtained quantiles of the daily maximum precipitation are compared with probable maximum precipitation values obtained using WMO methodology.
引用
收藏
页码:S1 / S7
页数:7
相关论文
共 50 条
  • [41] Modeling precipitation with a hydrodynamic approach
    Franke, D
    Gösele, W
    CHEMIE INGENIEUR TECHNIK, 1999, 71 (11) : 1245 - 1252
  • [42] Extreme Precipitation Spatial Analog: In Search of an Alternative Approach for Future Extreme Precipitation in Urban Hydrological Studies
    Wang, Ariel Kexuan
    Dominguez, Francina
    Schmidt, Arthur Robert
    WATER, 2019, 11 (05)
  • [43] Modeling annual extreme precipitation in China using the generalized extreme value distribution
    Feng, Song
    Nadarajah, Saralees
    Hu, Qi
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2007, 85 (05) : 599 - 613
  • [44] Bayesian hierarchical modeling of extreme hourly precipitation in Norway
    Dyrrdal, Anita Verpe
    Lenkoski, Alex
    Thorarinsdottir, Thordis L.
    Stordal, Frode
    ENVIRONMETRICS, 2015, 26 (02) : 89 - 106
  • [45] Spatial Modeling and Future Projection of Extreme Precipitation Extents
    Zhong, Peng
    Brunner, Manuela
    Opitz, Thomas
    Huser, Raphael
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [46] Bayesian spatial modeling of extreme precipitation return levels
    Cooley, Daniel
    Nychka, Douglas
    Naveau, Philippe
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 824 - 840
  • [47] Exploring R for Modeling Spatial Extreme Precipitation Data
    Gomes, Dora Prata
    Neves, Manuela
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 547 - 550
  • [48] Stochastic spatial disaggregation of extreme precipitation to validate a regional climate model and to evaluate climate change impacts over a small watershed
    Gagnon, P.
    Rousseau, A. N.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (05) : 1695 - 1704
  • [49] Stochastic modeling of spatial dependency structures of extreme precipitation in the Northern Great Plains using max-stable processes
    Boluwade, Alaba
    JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (09) : 3131 - 3149
  • [50] APPROACH TO STOCHASTIC MODELING OF RAINFALL
    MARSHALL, RJ
    SHAW, TL
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (11): : 1081 - 1081