Spectral algorithms for learning and clustering

被引:1
|
作者
Vempala, Santosh S. [1 ]
机构
[1] Georgia Tech Res Inst, Atlanta, GA 30332 USA
来源
Learning Theory, Proceedings | 2007年 / 4539卷
关键词
D O I
10.1007/978-3-540-72927-3_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Roughly speaking, spectral algorithms are methods that rely on the principal components (typically singular values and singular vectors) of an input matrix (or graph). The spectrum of a matrix captures many interesting properties in surprising ways. Spectral methods are already used for unsupervised learning, image segmentation, to improve precision and recall in databases and broadly for information retrieval. The common component of these methods is the subspace of a small number of singular vectors of the data, by means of the Singular Value Decomposition (SVD). We describe SVD from a geometric perspective and then focus on its central role in efficient algorithms for (a) the classical problem of "learning" a mixture of Gaussians in R-n and (b) clustering a set of objects from pairwise similarities.
引用
收藏
页码:3 / 4
页数:2
相关论文
共 50 条
  • [21] Algorithms of Machine Learning for K-Clustering
    Luis Castillo, S. Jose
    Fernandez del Castillo, Jose R.
    Gonzalez Sotos, Leon
    TRENDS IN PRACTICAL APPLICATIONS OF AGENTS AND MULTIAGENT SYSTEMS, 2010, 71 : 443 - 452
  • [22] A Comparison of Unsupervised Learning Algorithms for Gesture Clustering
    Ball, Adrian
    Rye, David
    Ramos, Fabio
    Velonaki, Mari
    PROCEEDINGS OF THE 6TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTIONS (HRI 2011), 2011, : 111 - 112
  • [23] Effects of Normalization on Spectral Unmixing and Clustering Algorithms in Raman Imaging
    Hedegaard, Martin
    Matthaeus, Christian
    Hassing, Soren
    Krafft, Christoph
    Diem, Max
    Popp, Juergen
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 350 - +
  • [24] Quantum spectral clustering algorithm for unsupervised learning
    Qingyu LI
    Yuhan HUANG
    Shan JIN
    Xiaokai HOU
    Xiaoting WANG
    ScienceChina(InformationSciences), 2022, 65 (10) : 43 - 52
  • [25] Spectral clustering based on learning similarity matrix
    Park, Seyoung
    Zhao, Hongyu
    BIOINFORMATICS, 2018, 34 (12) : 2069 - 2076
  • [26] Quantum spectral clustering algorithm for unsupervised learning
    Qingyu Li
    Yuhan Huang
    Shan Jin
    Xiaokai Hou
    Xiaoting Wang
    Science China Information Sciences, 2022, 65
  • [27] Fuzzy based affinity learning for spectral clustering
    Li, Qilin
    Ren, Yan
    Li, Ling
    Liu, Wanquan
    PATTERN RECOGNITION, 2016, 60 : 531 - 542
  • [28] Learning spectral clustering, with application to speech separation
    Centre de Morphologie Mathématique, Ecole des Mines de Paris, 35, rue Saint Honoré, 77300 Fontainebleau, France
    不详
    J. Mach. Learn. Res., 2006, (1963-2001):
  • [29] Learning spectral clustering, with application to speech separation
    Bach, Francis R.
    Jordan, Michael I.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1963 - 2001
  • [30] Water Distribution Network Clustering: Graph Partitioning or Spectral Algorithms?
    Di Nardo, A.
    Di Natale, M.
    Giudicianni, C.
    Greco, R.
    Santonastaso, G. F.
    COMPLEX NETWORKS & THEIR APPLICATIONS VI, 2018, 689 : 1197 - 1209