Immersed boundary-finite element model of fluid-structure interaction in the aortic root

被引:26
|
作者
Flamini, Vittoria [1 ]
DeAnda, Abe [2 ]
Griffith, Boyce E. [3 ,4 ,5 ]
机构
[1] NYU, Dept Mech & Aerosp Engn, Tandon Sch Engn, Brooklyn, NY USA
[2] Univ Texas Med Branch, Dept Surg, Div Cardiothorac Surg, Galveston, TX 77555 USA
[3] Univ N Carolina, Dept Math, Phillips Hall,Campus Box 3250, Chapel Hill, NC USA
[4] Univ N Carolina, Dept Biomed Engn, Phillips Hall,Campus Box 3250, Chapel Hill, NC USA
[5] Univ N Carolina, McAllister Heart Inst, Phillips Hall,Campus Box 3250, Chapel Hill, NC USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Aortic valve; Fluid-structure interaction; Immersed boundary method; Incompressible flow; Hyperelasticity; Finite element method; Finite difference method; STRUCTURE INTERACTION SIMULATION; RESIDUAL-STRESSES; VALVE DISEASE; HEART-VALVES; BLOOD-FLOW; DYNAMICS; ACCURATE;
D O I
10.1007/s00162-015-0374-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.
引用
收藏
页码:139 / 164
页数:26
相关论文
共 50 条
  • [21] Finite Element Model and Fluid-structure Interaction Analysis of The Intravascular Stent
    Yu, Wenyan
    Wang, Jianguo
    ADVANCES IN MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-4, 2013, 712-715 : 1167 - 1170
  • [22] Boundary and coupled boundary-finite element methods for transient wave-structure interaction
    Hsiao, George C.
    Sanchez-Vizuet, Tonatiuh
    Sayas, Francisco-Javier
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 237 - 265
  • [23] A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction
    Li, Zhe
    Favier, Julien
    COMPUTERS & FLUIDS, 2017, 143 : 90 - 102
  • [24] Fluid-structure interaction analysis by optimised boundary element-finite element coupling procedures
    Soares, Delfim, Jr.
    JOURNAL OF SOUND AND VIBRATION, 2009, 322 (1-2) : 184 - 195
  • [25] A Lattice Boltzmann-Immersed Boundary-Finite Element Method for Nonlinear Fluid-Solid Interaction Simulation with Moving Objects
    Gong, Chunlin
    Fang, Zhe
    Chen, Gang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2018, 15 (07)
  • [26] Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method
    Fan, SC
    Li, SM
    Yu, GY
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (04): : 591 - 598
  • [27] Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method
    Fan, S.C. (cfansc@ntu.edu.sg), 1600, American Society of Mechanical Engineers (72):
  • [28] The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method
    Yang, Jubiao
    Yu, Feimi
    Krane, Michael
    Zhang, Lucy T.
    JOURNAL OF FLUIDS AND STRUCTURES, 2018, 76 : 135 - 152
  • [29] Immersed Methods for Fluid-Structure Interaction
    Griffith, Boyce E.
    Patankar, Neelesh A.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 52, 2020, 52 : 421 - 448
  • [30] FINITE ELEMENT SIMULATION OF VISCOELASTIC FLUID-STRUCTURE INTERACTION
    Drobny, Alexander
    Friedmann, Elfriede
    TOPICAL PROBLEMS OF FLUID MECHANICS 2021, 2021, : 40 - 47