Tailoring Correlations of the Local Density of States in Disordered Photonic Materials

被引:20
|
作者
Riboli, F. [1 ,2 ,3 ]
Uccheddu, F. [4 ]
Monaco, G. [1 ]
Caselli, N. [3 ,5 ,6 ]
Intonti, F. [3 ,5 ]
Gurioli, M. [3 ,5 ]
Skipetrov, S. E. [7 ,8 ]
机构
[1] Univ Trento, Dept Phys, Via Sommarive 14, I-38050 Povo, TN, Italy
[2] CNR, Ist Nazl Ott, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
[3] European Lab Nonlinear Spect, Via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Ind Engn, Via Santa Marta 5, I-50139 Florence, Italy
[5] Univ Florence, Dept Phys, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
[6] CSIC, Inst Ciencia Mat Madrid, Calle Sor Juana Ins Cruz 3, Madrid, Spain
[7] Univ Grenoble Alpes, LPMMC, F-38000 Grenoble, France
[8] CNRS, LPMMC, F-38000 Grenoble, France
关键词
MEDIA; SCATTERING; DIFFUSION; ABSENCE; MODES; LIGHT;
D O I
10.1103/PhysRevLett.119.043902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be-to some extent-manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Analysis of the Limits of the Local Density of Photonic States near Nanostructures
    Sanders, Stephen
    Manjavacas, Alejandro
    ACS PHOTONICS, 2018, 5 (06): : 2437 - 2445
  • [32] Local density of states and modes of circular photonic crystal cavities
    Chaloupka, J
    Zarbakhsh, J
    Hingerl, K
    PHYSICAL REVIEW B, 2005, 72 (08):
  • [33] Periodicity enclosed in boundaries: local density of states in photonic clusters
    Prosentsov, V.
    Lagendijk, A.
    OPTICS EXPRESS, 2008, 16 (10) : 6974 - 6984
  • [34] Harnessing the photonic local density of states in graphene moire superlattices
    Kort-Kamp, W. J. M.
    Culchac, F. J.
    Rosa, F. S. S.
    Farina, C.
    Capaz, Rodrigo B.
    Pinheiro, F. A.
    PHYSICAL REVIEW B, 2021, 103 (15)
  • [35] Multifractal correlations of the local density of states in dirty superconducting films
    Stosiek, M.
    Evers, F.
    Burmistrov, I. S.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [36] Correlations in the local density of states probed by single electron tunneling
    Könemann, J
    König, P
    McCann, E
    Fal'ko, VI
    Haug, RJ
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 853 - 856
  • [37] Local density of states of chiral Hall edge states in gyrotropic photonic clusters
    Asatryan, Ara A.
    Botten, Lindsay C.
    Fang, Kejie
    Fan, Shanhui
    McPhedran, Ross C.
    PHYSICAL REVIEW B, 2013, 88 (03)
  • [38] LOCAL DENSITY OF STATES IN A DISORDERED CHAIN - A RENORMALIZATION GROUP-APPROACH
    DASILVA, CETG
    KOILLER, B
    SOLID STATE COMMUNICATIONS, 1981, 40 (03) : 215 - 219
  • [39] Edge states in disordered photonic graphene
    Zeuner, Julia M.
    Rechtsman, Mikael C.
    Nolte, Stefan
    Szameit, Alexander
    OPTICS LETTERS, 2014, 39 (03) : 602 - 605
  • [40] INTEGRAL-EQUATION APPROACH TO THE ELECTRONIC DENSITY OF STATES IN DISORDERED MATERIALS
    STRNADL, CF
    KAHL, G
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 156 : 232 - 235