For a subset A subset of N, let pA(n) denote the restricted partition function which counts partitions of n with all parts lying in A. In this paper, we use a variation of the Hardy-Littlewood circle method to provide an asymptotic formula for pA(n), where A is the set of kth powers of primes (for fixed k). This combines Vaughan's work on partitions into primes with the author's previous result about partitions into kth powers. This new asymptotic formula is an extension of a pattern indicated by several results about restricted partition functions over the past few years. Comparing these results side-by-side, we discuss a general strategy by which one could analyze pA(n) for a given set A.
机构:
United Arab Emirates Univ, Dept Math Sci, POB 17551, Al Ain, U Arab EmiratesUnited Arab Emirates Univ, Dept Math Sci, POB 17551, Al Ain, U Arab Emirates
机构:
Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Ricotta, Guillaume
Royer, Emmanuel
论文数: 0引用数: 0
h-index: 0
机构:
Lab Math Fondamentales, Campus Univ Cezeaux,3 Pl Vasarely,TSA 60026, F-63178 Aubiere, FranceUniv Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
机构:
Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, ItalyUniv Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
Gambini, Alessandro
Languasco, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, ItalyUniv Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy