PARTITIONS INTO PRIME POWERS

被引:5
|
作者
Gafni, Ayla [1 ]
机构
[1] Univ Mississippi, Dept Math, 305 Hume Hall, University, MS 38677 USA
关键词
11P55; 11P82 (primary); 11L07; 11L20 (secondary);
D O I
10.1112/mtk.12082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a subset A subset of N, let pA(n) denote the restricted partition function which counts partitions of n with all parts lying in A. In this paper, we use a variation of the Hardy-Littlewood circle method to provide an asymptotic formula for pA(n), where A is the set of kth powers of primes (for fixed k). This combines Vaughan's work on partitions into primes with the author's previous result about partitions into kth powers. This new asymptotic formula is an extension of a pattern indicated by several results about restricted partition functions over the past few years. Comparing these results side-by-side, we discuss a general strategy by which one could analyze pA(n) for a given set A.
引用
收藏
页码:468 / 488
页数:21
相关论文
共 50 条
  • [1] Partitions modulo prime powers and binomial coefficients
    Cai, TX
    NUMBER THEORETIC METHODS: FUTURE TRENDS, 2002, 8 : 67 - 72
  • [2] Bounds for the Eventual Positivity of Difference Functions of Partitions into Prime Powers
    Woodford, Roger
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (01)
  • [3] Partitions and powers of 13
    Hirschhorn, Michael D.
    JOURNAL OF NUMBER THEORY, 2017, 178 : 146 - 157
  • [4] PRIMES, POWERS, AND PARTITIONS
    DELAROSA, B
    FIBONACCI QUARTERLY, 1978, 16 (06): : 518 - 522
  • [5] Equidistribution and inequalities for partitions into powers
    Ciolan, Alexandru
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 409 - 431
  • [6] Partitions into powers of an algebraic number
    Kala, Vitezslav
    Zindulka, Mikulas
    RAMANUJAN JOURNAL, 2024, 64 (02): : 537 - 551
  • [7] Partitions in the prime number maze
    Hartley, MI
    ACTA ARITHMETICA, 2002, 105 (03) : 227 - 238
  • [8] Asymptotic prime partitions of integers
    Bartel, Johann
    Bhaduri, R. K.
    Brack, Matthias
    Murthy, M. V. N.
    PHYSICAL REVIEW E, 2017, 95 (05) : 052108
  • [9] EQUATIONS IN PRIME POWERS
    ESTES, D
    GURALNICK, R
    SCHACHER, M
    STRAUS, E
    PACIFIC JOURNAL OF MATHEMATICS, 1985, 118 (02) : 359 - 367
  • [10] SUMS OF PRIME POWERS
    PORUBSKY, S
    MONATSHEFTE FUR MATHEMATIK, 1979, 86 (04): : 301 - 303