Landmine detection using discrete hidden Markov models with Gabor features

被引:4
|
作者
Frigui, Hichem [1 ]
Missaoui, Oualid [1 ]
Gader, Paul [2 ]
机构
[1] Univ Louisville, CECS Dept, Louisville, KY 40292 USA
[2] Univ Florida, CISE Dept, Gainesville, FL 32611 USA
关键词
D O I
10.1117/12.722241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a general method for detecting landmine signatures in vehicle mounted ground penetrating radar (GPR) using discrete hidden Markov models and Gabor wavelet features. Observation vectors are constructed based on the expansion of the signature's B-scan using a bank of scale and orientation selective Gabor filters. This expansion provides localized frequency description that gets encoded in the observation sequence. These observations do not impose an explicit structure on the mine model, and are used to naturally model the time-varying signatures produced by the interaction of the GPR and the landmines as the vehicle moves. The proposed method is evaluated on real data collected by a GPR mounted on a moving vehicle at three different geographical locations that include several lanes. The model parameters are optimized using the BaumWelch algorithm, and lane-based cross-validation, in which each mine lane is in turn treated as a test set with the rest of the lanes used for training, is used to train and test the model. Preliminary results show that observations encoded with Gabor wavelet features perform better than observation encoded with gradient-based edge features.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Riboswitch Detection Using Profile Hidden Markov Models
    Payal Singh
    Pradipta Bandyopadhyay
    Sudha Bhattacharya
    A Krishnamachari
    Supratim Sengupta
    BMC Bioinformatics, 10
  • [32] A New Learning Method for Continuous Hidden Markov Models for Subsurface Landmine Detection in Ground Penetrating Radar
    Zhang, Xuping
    Bolton, Jeremy
    Gader, Paul
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (03) : 813 - 819
  • [33] Masquerade detection using profile hidden Markov models
    Huang, Lin
    Stamp, Mark
    COMPUTERS & SECURITY, 2011, 30 (08) : 732 - 747
  • [34] Flame detection in video using hidden Markov models
    Töreyin, BU
    Dedeoglu, Y
    Çetin, AE
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2457 - 2460
  • [35] Helicopter detection and classification using hidden Markov models
    Kuklinski, WS
    O'Neil, SD
    Tromp, LD
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION VIII, 1999, 3720 : 130 - 139
  • [36] Riboswitch Detection Using Profile Hidden Markov Models
    Singh, Payal
    Bandyopadhyay, Pradipta
    Bhattacharya, Sudha
    Krishnamachari, A.
    Sengupta, Supratim
    BMC BIOINFORMATICS, 2009, 10
  • [37] Face detection and recognition using Hidden Markov Models
    Nefian, AV
    Hayes, MH
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 1, 1998, : 141 - 145
  • [38] Detection of myocardial ischemia using hidden Markov models
    Bardonova, J
    Provaznik, I
    Novakova, M
    Vesela, R
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 2869 - 2872
  • [39] Online learning in discrete hidden Markov models
    Alamino, Roberto
    Caticha, Nestor
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 187 - +
  • [40] Speech recognition on an FPA using discrete and continuous hidden Markov models
    Melnikoff, SJ
    Quigley, SF
    Russell, MJ
    FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS: RECONFIGURABLE COMPUTING IS GOING MAINSTREAM, 2002, 2438 : 202 - 211