Band Selection and Decision Fusion for Target Detection in Hyperspectral Imagery

被引:0
|
作者
ul Haq, Ihsan [1 ]
Xu, Xiaojian [1 ]
机构
[1] Beihang Univ, Sch Elect Informat Engn, Beijing 100191, Peoples R China
来源
ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6 | 2009年
关键词
Hyperspectral imagery; data dimensionality reduction; remote sensing; band selection method;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A band clustering and selection approach based on standard deviation (STD) and orthogonal projection divergence (OPD) is introduced in this paper. STD of Hyperspectral image data is calculated. Hyperspectral image data is analyzed for multiple target detection. Spectral signatures of required target are used to measure OPD. Optimal number of bands preserving maximum information is calculated by using a new developed technique, virtual dimensionality (VD). For endmember extraction, vertex component analysis (VCA) is used. A new approach for decision fusion is also introduced by using spectral discriminatory entropy (SDE) and spectral angle mapper (SAM). A comparative study is conducted to show the effectiveness of new approaches of band clustering and selection and decision fusion.
引用
收藏
页码:1459 / 1462
页数:4
相关论文
共 50 条
  • [41] An Underwater Target Detection Framework for Hyperspectral Imagery
    Gillis, David B.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1798 - 1810
  • [42] Determining the dimensionality of hyperspectral imagery for unsupervised band selection
    Umaña-Díaz, A
    Vélez-Reyes, M
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 70 - 81
  • [43] Progressive Band Selection of Spectral Unmixing for Hyperspectral Imagery
    Chang, Chein-I
    Liu, Keng-Hao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (04): : 2002 - 2017
  • [44] Unsupervised target subpixel detection in hyperspectral imagery
    Chang, CI
    Du, Q
    Chiang, SS
    Heinz, DC
    Ginsberg, IW
    ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 370 - 379
  • [45] Regularization Framework for Target Detection in Hyperspectral Imagery
    Zhang, Yuxiang
    Du, Bo
    Zhang, Liangpei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 313 - 317
  • [46] Progressive sample processing of band selection for hyperspectral imagery
    Liu, Keng-Hao
    Chien, Hung-Chang
    Chen, Shih-Yu
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIII, 2017, 10427
  • [47] AN OPTIMIZED BAND SELECTION SCHEME FOR HYPERSPECTRAL IMAGERY ANALYSIS
    Su, Hongjun
    Du, Qian
    Du, Peijun
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [48] Research advance on target detection for hyperspectral imagery
    College of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
    不详
    不详
    Tien Tzu Hsueh Pao, 2009, 9 (2016-2024): : 2016 - 2024
  • [49] A simulated annealing band selection approach for hyperspectral imagery
    Fang, Jyh Perng
    Chang, Yang-Lang
    Ren, Hsuan
    Lin, Chun-Chieh
    Liang, Wen-Yew
    Fang, Jwei-Fei
    CHEMICAL AND BIOLOGICAL SENSORS FOR INDUSTRIAL AND ENVIRONMENTAL MONITORING II, 2006, 6378
  • [50] A New Approach to Band Clustering and Selection for Hyperspectral Imagery
    ul Haq, Ihsan
    Xu, Xiaojian
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1199 - 1203