What and where: A context-based recommendation system for object insertion

被引:14
|
作者
Zhang, Song-Hai [1 ,2 ]
Zhou, Zheng-Ping [1 ]
Liu, Bin [1 ]
Dong, Xi [1 ]
Hall, Peter [3 ]
机构
[1] Tsinghua Univ, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing 100084, Peoples R China
[3] Univ Bath, Dept Comp Sci, Media Technol Res Ctr, Bath BA2 7AY, Avon, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
object recommendation; bounding box prediction; image composition; object-level context;
D O I
10.1007/s41095-020-0158-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel problem revolving around two tasks: (i) given a scene, recommend objects to insert, and (ii) given an object category, retrieve suitable background scenes. A bounding box for the inserted object is predicted in both tasks, which helps downstream applications such as semiautomated advertising and video composition. The major challenge lies in the fact that the target object is neither present nor localized in the input, and furthermore, available datasets only provide scenes with existing objects. To tackle this problem, we build an unsupervised algorithm based on object-level contexts, which explicitly models the joint probability distribution of object categories and bounding boxes using a Gaussian mixture model. Experiments on our own annotated test set demonstrate that our system outperforms existing baselines on all sub-tasks, and does so using a unified framework. Future extensions and applications are suggested.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [21] Music emotion classification and context-based music recommendation
    Byeong-jun Han
    Seungmin Rho
    Sanghoon Jun
    Eenjun Hwang
    Multimedia Tools and Applications, 2010, 47 : 433 - 460
  • [22] Music emotion classification and context-based music recommendation
    Han, Byeong-jun
    Rho, Seungmin
    Jun, Sanghoon
    Hwang, Eenjun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2010, 47 (03) : 433 - 460
  • [23] Context-based infomobility system for cultural heritage recommendation: Tourist Assistant-TAIS
    Smirnov, Alexander V.
    Kashevnik, Alexey M.
    Ponomarev, Andrew
    PERSONAL AND UBIQUITOUS COMPUTING, 2017, 21 (02) : 297 - 311
  • [24] Applying Core Scientific Concepts to Context-Based Citation Recommendation
    Duma, Daniel
    Liakata, Maria
    Clare, Amanda
    Ravenscroft, James
    Klein, Ewan
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 1737 - 1742
  • [25] Learning Context-based Feature Descriptors for Object Tracking
    Borji, Ali
    Frintrop, Simone
    PROCEEDINGS OF THE 5TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI 2010), 2010, : 79 - 80
  • [26] Context-Based Service Recommendation for Assisting Business Process Design
    Nguyen Ngoc Chan
    Gaaloul, Valid
    Tata, Samir
    E-COMMERCE AND WEB TECHNOLOGIES, 2011, 85 : 39 - 51
  • [27] Object Detection Using Context-Based Cascade Classifier
    Nam, Mi Young
    Rhee, Phill Kyu
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 1021 - 1029
  • [28] Online Context-based Object Recognition for Mobile Robots
    Ruiz-Sarmiento, J. R.
    Guenther, Martin
    Galindo, Cipriano
    Gonzalez-Jimenez, Javier
    Hertzberg, Joachim
    2017 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2017, : 247 - 252
  • [29] Object's Interaction Management by Means of a Fuzzy System within a Context-Based Tracking System
    Sanchez, Ana M.
    Patricio, Miguel A.
    Garcia, J.
    INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE 2008, 2009, 50 : 720 - 728
  • [30] Causal neural mechanisms of context-based object recognition
    Wischnewski, Miles
    Peelen, Marius, V
    ELIFE, 2021, 10