Measurement and Analysis of Thermal Conductivity of Ti3C2Tx MXene Films

被引:112
|
作者
Chen, Lin [1 ]
Shi, Xuguo [2 ]
Yu, Nanjie [1 ,4 ]
Zhang, Xing [2 ]
Du, Xiaoze [1 ]
Lin, Jun [3 ]
机构
[1] North China Elect Power Univ, Minist Educ, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
[3] North China Elect Power Univ, Sch Renewable Energy, Beijing 102206, Peoples R China
[4] China United Engn Corp Ltd, Hangzhou 310052, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal properties; electrical properties; MXene; T-type method; POLYMER COMPOSITES; ENHANCEMENT; NANOTUBE; CARBIDE;
D O I
10.3390/ma11091701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new class of 2D materials named ''MXene'' has recently received significant research interest as they have demonstrated great potential for the applications in batteries, supercapacitors, and electronic devices. However, the research on their thermal properties is still very limited. In this work, Ti3C2Tx films were prepared by the vacuum-assisted filtration of delaminated nano-flake Ti3C2Tx MXenes. The thermal and electrical conductivity of the Ti3C2Tx films were measured by the state-of-the-art T-type method. The results showed that the effective thermal conductivity of the films increased from 1.26 W center dot m(-1)center dot K-1 at 80 K to 2.84 W center dot m(-1)center dot K-1 at 290 K, while the electrical conductivity remained at 12,800 Omega(-1)center dot m(-1) for the same temperature range. Thermal resistance model was applied to evaluate the inherent thermal conductivity of the Ti3C2Tx flakes, which was estimated to be in the range of tens to hundreds W center dot m(-1)center dot K-1.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Ti3C2Tx MXene compounds for electrochemical energy storage
    Ferrara, Chiara
    Gentile, Antonio
    Marchionna, Stefano
    Ruffo, Riccardo
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29
  • [42] Memristive Effect in Ti3C2Tx (MXene) Polyelectrolyte Multilayers
    Aglikov, Aleksandr
    Volkova, Olga
    Bondar, Anna
    Moskalenko, Ivan
    Novikov, Alexander
    Skorb, Ekaterina V.
    Smirnov, Evgeny
    CHEMPHYSCHEM, 2023, 24 (17)
  • [43] Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene
    Sarycheva, Asia
    Gogotsi, Yury
    CHEMISTRY OF MATERIALS, 2020, 32 (08) : 3480 - 3488
  • [44] Ti3C2Tx MXene for organic/perovskite optoelectronic devices
    Chen Ke-fan
    Cai Ping
    Peng Hong-liang
    Xue Xiao-gang
    Wang Zhong-min
    Sun Li-xian
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2021, 28 (12) : 3935 - 3958
  • [45] Sonodegradation of amitriptyline and ibuprofen in the presence of Ti3C2Tx MXene
    Jeon, Minjung
    Jun, Byung-Moon
    Kim, Sewoon
    Cho, Jaeweon
    Park, Chang Min
    Choong, Choe Earn
    Jang, Min
    Yoon, Yeomin
    JOURNAL OF HAZARDOUS MATERIALS LETTERS, 2021, 2
  • [46] Novel electrospun Ti3C2Tx MXene titania nanocomposites
    Debow, Shaun
    DeLacy, Brendan
    Creasy, William
    Gogotsi, Yury
    Maleski, Kathleen
    Kuhn, Danielle
    Zachary, Zander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [47] Understanding the Lithium Storage Mechanism of Ti3C2TX MXene
    Cheng, Renfei
    Hu, Tao
    Zhang, Hui
    Wang, Chunmei
    Hu, Minmin
    Yang, Jinxing
    Cui, Cong
    Guang, Tianjia
    Li, Changji
    Shi, Chao
    Hou, Pengxiang
    Wang, Xiaohui
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (02): : 1099 - 1109
  • [48] Anomalous Radio Frequency Conductivity and Sheet Resistance of 2D Ti3C2Tx MXene
    Tajin, Md Abu Saleh
    Dandekar, Kapil R.
    IEEE ACCESS, 2022, 10 : 25850 - 25856
  • [49] Electrical Conductivity Enhancement and Electronic Applications of 2D Ti3C2Tx MXene Materials
    Qiao, Chunyang
    Wu, Han
    Xu, Xiyan
    Guan, Zhengxin
    Ou-Yang, Wei
    ADVANCED MATERIALS INTERFACES, 2021, 8 (24)
  • [50] High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites
    Liu, Rui
    Li, Weihua
    ACS OMEGA, 2018, 3 (03): : 2609 - 2617