A cubic system with twelve small amplitude limit cycles

被引:38
|
作者
Liu, YR
Huang, WT [1 ]
机构
[1] Guilin Univ Elect Technol, Dept Comp Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Cent S Univ, Coll Math Sci & Comp Technol, Changsha 410083, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2005年 / 129卷 / 02期
基金
中国国家自然科学基金;
关键词
limit cycle; focal value; singular point value; Poincard succession function;
D O I
10.1016/j.bulsci.2004.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the bifurcation of limit cycles for a cubic polynomial system is investigated. By the computation of the singular point values, we prove that the system has 12 small amplitude limit cycles. The process of the proof is algebraic and symbolic. (C) 2004 Elsevier SAS. All rights reserved.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
  • [41] HOPF BIFURCATIONS AND SMALL AMPLITUDE LIMIT CYCLES IN RUCKLIDGE SYSTEMS
    Dias, Fabio Scalco
    Mello, Luis Fernando
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [42] A Note on Small Amplitude Limit Cycles of Lienard Equations Theory
    Bouattia, Yassine
    Boudjehem, Djalil
    Makhlouf, Ammar
    Zubair, Sulima Ahmed
    Idris, Sahar Ahmed
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [43] The number of small amplitude limit cycles in arbitrary polynomial systems
    Zhao, Liqin
    Fan, Zengyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 237 - 249
  • [44] Small-amplitude limit cycles in polynomial Lienard systems
    Christopher, Colin J.
    Lloyd, Noel G.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02): : 183 - 190
  • [45] A NECESSARY AND SUFFICIENT CONDITION FOR THE COEXISTENCE OF A CLASS OF CUBIC CURVE SEPARATRIX CYCLES AND LIMIT CYCLES TO THE CUBIC SYSTEM
    司成斌
    沈伯骞
    Annals of Differential Equations, 2003, (02) : 195 - 201
  • [46] Bifurcations of small limit cycles in Lienard systems with cubic restoring terms
    Tian, Yun
    Han, Maoan
    Xu, Fangfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1561 - 1580
  • [47] Bifurcation of limit cycles in a cubic Hamiltonian system with perturbed terms
    Hong, Xiao-Chun
    Qin, Qing-Hua
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 12 - 16
  • [48] Limit cycles of a lienard cubic system with quadratic friction function
    Cherkas, L. A.
    Sidorenko, I. N.
    DIFFERENTIAL EQUATIONS, 2008, 44 (02) : 226 - 230
  • [49] Center problem and the bifurcation of limit cycles for a cubic polynomial system
    Du, Chaoxiong
    Huang, Wentao
    Zhang, Qi
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (17) : 5200 - 5215
  • [50] Limit cycles of a lienard cubic system with quadratic friction function
    L. A. Cherkas
    I. N. Sidorenko
    Differential Equations, 2008, 44