Extremal slabs in the cube and the Laplace transform

被引:24
|
作者
Barthe, F
Koldobsky, A [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Marne la Vallee, CNRS, Equipe Anal & Math Appl, F-77454 Champs Sur Marne 2, Marne La Vallee, France
关键词
volume of slab; Laplace transform; log-concave function;
D O I
10.1016/S0001-8708(02)00055-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the volume of symmetric slabs in the unit cube. We show that, for t<3/4, the slab parallel to a face has the minimal volume among all symmetric slabs with width t. For large width, we prove the asymptotic extremality of the slab orthogonal to the main diagonal. The proof is based on certain concavity properties of the Laplace transform and on several limit theorems from probability: the central limit theorem and classical principles of moderate and large deviations. Finally, we extend some of the results to more general classes of bodies. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:89 / 114
页数:26
相关论文
共 50 条
  • [21] On the Generalized Laplace Transform
    Bosch, Paul
    Carmenate Garcia, Hector Jose
    Manuel Rodriguez, Jose
    Maria Sigarreta, Jose
    SYMMETRY-BASEL, 2021, 13 (04):
  • [22] ON A GENERALIZATION OF LAPLACE TRANSFORM
    RANGACHA.MS
    COMPOSITIO MATHEMATICA, 1968, 19 (03) : 167 - &
  • [23] A GENERALIZATION OF LAPLACE TRANSFORM
    DUNN, HS
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 63 : 155 - &
  • [24] Asymptotics of a Laplace transform
    Bradley, DM
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (03): : 280 - 281
  • [25] Fractional Laplace transform
    K. K. Sharma
    Signal, Image and Video Processing, 2010, 4 : 377 - 379
  • [26] ON GENERALISED LAPLACE TRANSFORM
    SINGH, SP
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1963, 33 (02): : 231 - &
  • [27] LAPLACE TRANSFORM FOR DISTRIBUTIONS
    PRICE, DB
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (01) : 49 - 80
  • [28] BEHIND THE LAPLACE TRANSFORM
    NAHIN, PJ
    IEEE SPECTRUM, 1991, 28 (03) : 60 - 60
  • [29] EXTREMAL PROPERTIES OF EIGENVALUES OF THE LAPLACE OPERATOR ON A BALL
    TYURIN, KI
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (03) : 235 - 237
  • [30] Nahm transform and parabolic minimal Laplace transform
    Szabo, Szilard
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) : 2241 - 2258