New types of Lipschitz summing maps between metric spaces

被引:8
|
作者
Saleh, Manaf Adnan Saleh [1 ,2 ]
机构
[1] Friedrich Schiller Univ, Math Inst, D-07743 Jena, Germany
[2] Al Nahrain Univ, Coll Sci, Dept Math, Baghdad, Iraq
关键词
Lipschitz maps; operator ideal; Lipschitz summability maps; domination theorem;
D O I
10.1002/mana.201500020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building upon the results of M. C. Matos and extending previous work of J. D. Farmer, W. B. Johnson and J. A. Chavez-Dominguez we define a Lipschitz mixed summable sequence as the pointwise product of a strongly summable sequence and a weakly Lipschitz summable one. Then we introduce classes of Lipschitz maps satisfying inequalities between Lipschitz mixed summable sequence and strongly summable sequences analogously to the linear case. These classes generalize the classes of Lipschitz summable maps considered earlier in the literature. We use standard techniques to establish several basic properties, showing that these classes of maps are ideals and some relationships between them. We establish various composition and inclusion theorems between different classes of Lipschitz summing maps and several characterizations. Furthermore, we prove that the classes of Lipschitz p-summing maps coincide and the nonlinear "Pietsch Domination Theorem" for the case 0 < p < 1. We also identify cases where all Lipschitz maps are in the aforementioned classes of Lipschitz maps and discuss a sufficient condition for a Lipschitz composition formula as in the linear case. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1347 / 1373
页数:27
相关论文
共 50 条
  • [41] Lipschitz-free Spaces on Finite Metric Spaces
    Dilworth, Stephen J.
    Kutzarova, Denka
    Ostrovskii, Mikhail, I
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (03): : 774 - 804
  • [42] Extensions of Lipschitz maps into Hadamard spaces
    Lang, U
    Pavlovic, B
    Schroeder, V
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (06) : 1527 - 1553
  • [43] Extensions of Lipschitz maps into Hadamard spaces
    U. Lang
    B. Pavlović
    V. Schroeder
    Geometric & Functional Analysis GAFA, 2000, 10 : 1527 - 1553
  • [44] Biseparating maps on generalized Lipschitz spaces
    Leung, Denny H.
    STUDIA MATHEMATICA, 2010, 196 (01) : 23 - 40
  • [45] Representation of Lipschitz Maps and Metric Coordinate Systems
    Arnau, Roger
    Calabuig, Jose M.
    Sanchez Perez, Enrique A.
    MATHEMATICS, 2022, 10 (20)
  • [46] Emerging notions of norm attainment for Lipschitz maps between Banach spaces
    Choi, Geunsu
    Choi, Yun Sung
    Martin, Miguel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (01)
  • [47] Linear extension operators between spaces of Lipschitz maps and optimal transport
    Ambrosio, Luigi
    Puglisi, Daniele
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 1 - 21
  • [48] Extension of semi-Lipschitz maps on non-subadditive quasi-metric spaces: new tools for Artificial Intelligence
    Arnau, Roger
    Jonard-Perez, Natalia
    Perez, Enrique A. Sanchez
    QUAESTIONES MATHEMATICAE, 2024, 47 (01) : 123 - 146
  • [49] SOME NEW TYPES OF CONTINUITY IN ASYMMETRIC METRIC SPACES
    Yaying, Taja
    Hazarika, Bipan
    Mohiuddine, Syed Abdul
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 485 - 493
  • [50] CLOSED MAPS ON METRIC SPACES
    Tanaka, Yoshio
    TOPOLOGY AND ITS APPLICATIONS, 1980, 11 (01) : 87 - 92