Learning Deep Global Multi-Scale and Local Attention Features for Facial Expression Recognition in the Wild

被引:146
|
作者
Zhao, Zengqun [1 ]
Liu, Qingshan [1 ]
Wang, Shanmin [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[3] Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Face recognition; Image recognition; Faces; Convolution; Image reconstruction; Geometry; Facial expression recognition; deep convolutional neural networks; multi-scale; local attention; INFORMATION; PATCHES; JOINT; POSE;
D O I
10.1109/TIP.2021.3093397
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial expression recognition (FER) in the wild received broad concerns in which occlusion and pose variation are two key issues. This paper proposed a global multi-scale and local attention network (MA-Net) for FER in the wild. Specifically, the proposed network consists of three main components: a feature pre-extractor, a multi-scale module, and a local attention module. The feature pre-extractor is utilized to pre-extract middle-level features, the multi-scale module to fuse features with different receptive fields, which reduces the susceptibility of deeper convolution towards occlusion and variant pose, while the local attention module can guide the network to focus on local salient features, which releases the interference of occlusion and non-frontal pose problems on FER in the wild. Extensive experiments demonstrate that the proposed MA-Net achieves the state-of-the-art results on several in-the-wild FER benchmarks: CAER-S, AffectNet-7, AffectNet-8, RAFDB, and SFEW with accuracies of 88.42%, 64.53%, 60.29%, 88.40%, and 59.40% respectively. The codes and training logs are publicly available at https://github.com/zengqunzhao/MA-Net.
引用
收藏
页码:6544 / 6556
页数:13
相关论文
共 50 条
  • [41] Feature fusion of multi-granularity and multi-scale for facial expression recognition
    Haiying Xia
    Lidan Lu
    Shuxiang Song
    The Visual Computer, 2024, 40 : 2035 - 2047
  • [42] Improved SSD using deep multi-scale attention spatial-temporal features for action recognition
    Zhou, Shuren
    Qiu, Jia
    Solanki, Arun
    MULTIMEDIA SYSTEMS, 2022, 28 (06) : 2123 - 2131
  • [43] Facial Expression Recognition by Multi-Scale CNN with Regularized Center Loss
    Li, Zhenghao
    Wu, Song
    Xiao, Guoqiang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3384 - 3389
  • [44] Facial Expression Recognition Method Based on Multi-scale Detail Enhancement
    Tan X.
    Li Z.
    Fan Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2019, 41 (11): : 2752 - 2759
  • [45] Facial Expression Recognition Method Based on Multi-scale Detail Enhancement
    Tan Xiaohui
    Li Zhaowei
    Fan Yachun
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (11) : 2752 - 2759
  • [46] Discriminative attention-augmented feature learning for facial expression recognition in the wild
    Zhou, Linyi
    Fan, Xijian
    Tjahjadi, Tardi
    Das Choudhury, Sruti
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 925 - 936
  • [47] Hybrid Attention-Aware Learning Network for Facial Expression Recognition in the Wild
    Gong, Weijun
    La, Zhiyao
    Qian, Yurong
    Zhou, Weihang
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (09) : 12203 - 12217
  • [48] Discriminative attention-augmented feature learning for facial expression recognition in the wild
    Linyi Zhou
    Xijian Fan
    Tardi Tjahjadi
    Sruti Das Choudhury
    Neural Computing and Applications, 2022, 34 : 925 - 936
  • [49] A multi-scale sentiment recognition network based on deep learning
    Zhang, Ning
    Zhang, Xiufeng
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 526 - 530
  • [50] Prediction of Aeroengine Remaining Life by Combining Multi-scale Local Features and Transformer Global Learning
    Chen, Jun-Ying
    Xi, Yue-Yun
    Li, Zhao-Yang
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (09): : 1818 - 1830