Learning Deep Global Multi-Scale and Local Attention Features for Facial Expression Recognition in the Wild

被引:146
|
作者
Zhao, Zengqun [1 ]
Liu, Qingshan [1 ]
Wang, Shanmin [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Minist Educ, Nanjing 210044, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[3] Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Face recognition; Image recognition; Faces; Convolution; Image reconstruction; Geometry; Facial expression recognition; deep convolutional neural networks; multi-scale; local attention; INFORMATION; PATCHES; JOINT; POSE;
D O I
10.1109/TIP.2021.3093397
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial expression recognition (FER) in the wild received broad concerns in which occlusion and pose variation are two key issues. This paper proposed a global multi-scale and local attention network (MA-Net) for FER in the wild. Specifically, the proposed network consists of three main components: a feature pre-extractor, a multi-scale module, and a local attention module. The feature pre-extractor is utilized to pre-extract middle-level features, the multi-scale module to fuse features with different receptive fields, which reduces the susceptibility of deeper convolution towards occlusion and variant pose, while the local attention module can guide the network to focus on local salient features, which releases the interference of occlusion and non-frontal pose problems on FER in the wild. Extensive experiments demonstrate that the proposed MA-Net achieves the state-of-the-art results on several in-the-wild FER benchmarks: CAER-S, AffectNet-7, AffectNet-8, RAFDB, and SFEW with accuracies of 88.42%, 64.53%, 60.29%, 88.40%, and 59.40% respectively. The codes and training logs are publicly available at https://github.com/zengqunzhao/MA-Net.
引用
收藏
页码:6544 / 6556
页数:13
相关论文
共 50 条
  • [1] Global multi-scale extraction and local mixed multi-head attention for facial expression recognition in the wild
    Fei, Zixiang
    Zhang, Bo
    Zhou, Wenju
    Li, Xia
    Zhang, Yukun
    Fei, Minrui
    NEUROCOMPUTING, 2025, 622
  • [2] Multi-Scale Attention Learning Network for Facial Expression Recognition
    Dong, Qian
    Ren, Weihong
    Gao, Yu
    Jiang, Weibo
    Liu, Honghai
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1732 - 1736
  • [3] Novel multi-scale deep residual attention network for facial expression recognition
    Liu, Dong
    Wang, Lifeng
    Wang, Zhiyong
    Chen, Longxi
    JOURNAL OF ENGINEERING-JOE, 2020, 2020 (12): : 1220 - 1226
  • [4] A Multi-scale Attention-based Facial Emotion Recognition Method Based on Deep Learning
    ZHANG Ning
    ZHANG Xiufeng
    FU Xingkui
    QI Guobin
    Instrumentation, 2022, 9 (03) : 51 - 58
  • [5] A multi-scale multi-attention network for dynamic facial expression recognition
    Xia, Xiaohan
    Yang, Le
    Wei, Xiaoyong
    Sahli, Hichem
    Jiang, Dongmei
    MULTIMEDIA SYSTEMS, 2022, 28 (02) : 479 - 493
  • [6] A multi-scale multi-attention network for dynamic facial expression recognition
    Xiaohan Xia
    Le Yang
    Xiaoyong Wei
    Hichem Sahli
    Dongmei Jiang
    Multimedia Systems, 2022, 28 : 479 - 493
  • [7] Multi-Scale Integrated Attention Mechanism for Facial Expression Recognition Network
    Luo, Sishi
    Li, Maojun
    Chen, Man
    Computer Engineering and Applications, 2023, 59 (01): : 199 - 206
  • [8] Multi-Scale Coordinate Attention Pyramid Convolution for Facial Expression Recognition
    Ni, Jinyuan
    Zhang, Jianxun
    Computer Engineering and Applications, 2023, 59 (22) : 242 - 250
  • [9] Local Learning With Deep and Handcrafted Features for Facial Expression Recognition
    Georgescu, Mariana-Iuliana
    Ionescu, Radu Tudor
    Popescu, Marius
    IEEE ACCESS, 2019, 7 : 64827 - 64836
  • [10] A novel facial expression recognition model based on harnessing complementary features in multi-scale network with attention fusion
    Ghadai, Chakrapani
    Patra, Dipti
    Okade, Manish
    IMAGE AND VISION COMPUTING, 2024, 149