Calculation of reaction rate constants using approximate evolution of quantum trajectories in imaginary and real time

被引:10
|
作者
Garashchuk, Sophya [1 ]
机构
[1] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
关键词
BOLTZMANN OPERATOR; DYNAMICS; REPRESENTATION;
D O I
10.1016/j.cplett.2010.03.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reaction rate constants can be directly obtained from evolution of the flux operator eigenvectors under the Boltzmann and Hamiltonian operators. This is achieved by evolving the quantum trajectory ensemble, representing a wavefunction, in imaginary time seamlessly switching to the real-time dynamics. Quantum-mechanical effects are incorporated through the quantum potential dependent on the trajectory momenta or on the derivatives of the wavefunction amplitude. For practicality the quantum potential and wavefunction nodes are described using linear basis, which is exact for Gaussian wavefunctions. For the Eckart barrier approximate rate constants show significant improvement over the parabolic barrier rate constants. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [11] Digital Quantum Simulation of Open Quantum Systems Using Quantum Imaginary-Time Evolution
    Kamakari, Hirsh
    Sun, Shi-Ning
    Motta, Mario
    Minnich, Austin J.
    PRX QUANTUM, 2022, 3 (01):
  • [12] Realizing quantum imaginary time evolution in experiment
    Xiao Yuan
    Science China(Physics,Mechanics & Astronomy), 2024, (04) : 171 - 172
  • [13] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution
    Mario Motta
    Chong Sun
    Adrian T. K. Tan
    Matthew J. O’Rourke
    Erika Ye
    Austin J. Minnich
    Fernando G. S. L. Brandão
    Garnet Kin-Lic Chan
    Nature Physics, 2020, 16 : 205 - 210
  • [14] Combinatorial optimization with quantum imaginary time evolution
    Bauer, Nora M.
    Alam, Rizwanul
    Siopsis, George
    Ostrowski, James
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [15] Alternative approach to quantum imaginary time evolution
    Jouzdani, Pejman
    Johnson, Calvin W.
    Mucciolo, Eduardo R.
    Stetcu, Ionel
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [16] Solving MaxCut with quantum imaginary time evolution
    Rizwanul Alam
    George Siopsis
    Rebekah Herrman
    James Ostrowski
    Phillip C. Lotshaw
    Travis S. Humble
    Quantum Information Processing, 22
  • [17] Realizing quantum imaginary time evolution in experiment
    Yuan, Xiao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (04)
  • [18] Solving MaxCut with quantum imaginary time evolution
    Alam, Rizwanul
    Siopsis, George
    Herrman, Rebekah
    Ostrowski, James
    Lotshaw, Phillip C.
    Humble, Travis S.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (07)
  • [19] Realizing quantum imaginary time evolution in experiment
    Xiao Yuan
    Science China Physics, Mechanics & Astronomy, 2023, 67
  • [20] Spectral estimation for Hamiltonians: a comparison between classical imaginary-time evolution and quantum real-time evolution
    Stroeks, M. E.
    Helsen, J.
    Terhal, B. M.
    NEW JOURNAL OF PHYSICS, 2022, 24 (10):