Experimental study on the cyclic behavior of thermal energy storage in an air-alumina packed bed

被引:33
|
作者
Al-Azawii, Mohammad M. S. [1 ]
Theade, Carter [2 ]
Danczyk, Megan [2 ]
Johnson, Erick [1 ]
Anderson, Ryan [2 ,3 ]
机构
[1] Montana State Univ, Dept Mech & Ind Engn, Bozeman, MT 59717 USA
[2] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA
[3] Montana State Univ, Energy Res Inst, Bozeman, MT 59717 USA
关键词
Packed bed thermal energy storage; Thermal cycles; Thermal exergy; Exergetic efficiency; LATENT-HEAT; TEMPERATURE; SYSTEM; PHASE; TECHNOLOGIES; THERMOCLINES; PERFORMANCE; SELECTION; MODELS; PCM;
D O I
10.1016/j.est.2018.05.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal energy storage (TES) in a packed bed exemplifies important technology for concentrated solar thermal (CST) applications such as electricity production, desalination, enhanced oil recovery, fuel production and chemical processing. In this study, the cyclic charge-discharge behavior of packed bed TES was studied experimentally using alumina beads as packing material. Air was used as heat transfer fluid (HTF) with an inlet temperature of 150 degrees C. This paper shows the effect of flow rates, partial charge-discharge cycling, and storage hold time on the exergetic efficiencies. The results indicate that the exergy efficiency increases from 35.7% to 55.4% with increasing flow rate from 0.0020 to 0.0061 m(3)/s. The exergy decays for multiple cycles before reaching a steady state. Over partial charge-discharge cycles at flow rates of 0.0020, 0.0034, 0.0048, and 0.0061 m(3)/s, the exergetic efficiency decays from 59.8% to 50.2%, 72.5% to 61.2%, 79.0% to 66.2%, and 83.1% to 69.2%, respectively. Heat losses and axial thermal dispersion are two important variables that affect the exergy efficiency, and the individual contributions were estimated via a model for the partial cycles. Heat losses were considered for three durations of holding: no hold, 30 min hold and 120 min hold. The exergy efficiency decays from 53.2% to 31.0% from no hold to 120 min hold due to the heat lost to the ambient.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条
  • [21] A study of a packed-bed thermal energy storage device: test rig, experimental and numerical results
    Cascetta, Mario
    Cau, Giorgio
    Puddu, Pierpaolo
    Serra, Fabio
    69TH CONFERENCE OF THE ITALIAN THERMAL ENGINEERING ASSOCIATION, ATI 2014, 2015, 81 : 987 - 994
  • [22] Experimental study on storage performance of packed bed solar thermal energy storage system using sintered ore particles
    Lai, Zhenya
    Zhou, Hao
    Zhou, Mingxi
    Lv, Laiquan
    Meng, Hanxiao
    Cen, Kefa
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
  • [23] A study on the charging performance of a packed bed for compressed air energy storage system
    Ling, Xiang (xling@njtech.edu.cn), 1600, Science Press (37):
  • [24] A study on performance of a liquid air energy storage system with packed bed units
    Peng, Hao
    Shan, Xuekun
    Yang, Yu
    Ling, Xiang
    APPLIED ENERGY, 2018, 211 : 126 - 135
  • [25] An experimental investigation of porosity gradient and staggered arrangements in packed bed thermal energy storage
    Asif, Muhammad
    Rabbi, Jawad
    Bibi, Wajeeha
    ENERGY STORAGE, 2024, 6 (01)
  • [26] Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology
    Ortega-Fernandez, Inigo
    Zavattoni, Simone A.
    Rodriguez-Aseguinolaza, Javier
    D'Aguanno, Bruno
    Barbato, Maurizio C.
    APPLIED ENERGY, 2017, 205 : 280 - 293
  • [27] Performance study of a packed bed in a closed loop thermal energy storage system
    Chai, Lei
    Wang, Liang
    Liu, Jia
    Yang, Liang
    Chen, Haisheng
    Tan, Chunqing
    ENERGY, 2014, 77 : 871 - 879
  • [28] Experimental study on energy storage performances of packed bed with different solid materials
    Zhou, Hao
    Lai, Zhenya
    Cen, Kefa
    Energy, 2022, 246
  • [29] Experimental study on energy storage performances of packed bed with different solid materials
    Zhou, Hao
    Lai, Zhenya
    Cen, Kefa
    ENERGY, 2022, 246
  • [30] STUDY ON THE STANDBY CHARACTERISTICS OF A PACKED BED THERMAL ENERGY STORAGE: EXPERIMENTAL RESULTS AND MODEL BASED PARAMETER OPTIMIZATION
    Schwarzmayr, Paul
    Birkelbach, Felix
    Walter, Heimo
    Hofmann, Rene
    PROCEEDINGS OF ASME POWER APPLIED R&D 2023, POWER2023, 2023,