Personalised Modelling on Integrated Clinical and EEG Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network System

被引:0
|
作者
Doborjeh, Maryam Gholami [1 ]
Kasabov, Nikola [1 ]
机构
[1] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
关键词
personalised modelling; spiking neural networks; NeuCube; spatiotemporal data; EEG data; opiate addict; methadone maintenance treatment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel personalised modelling framework and system for analysing Spatio-Temporal Brain Data (STBD) along with person clinical static data. For every individual, based on selected subset of similar to this individual clinical data, a subset of STBD is used for training a personalised Spiking Neural Network (PSNN) model using the recently proposed NeuCube SNN architecture. The proposed method is illustrated on a case study of personalised modelling using clinical and EEG data of two groups of subjects - drug addicts and addicts under medication. The PSNN models help to achieve a better classification accuracy compared to global SNN models or when using traditional AI methods. A PSNN model visualisation enables discovery of new knowledge about individual persons and to distinguish complex STBD across subjects.
引用
收藏
页码:1373 / 1378
页数:6
相关论文
共 50 条
  • [31] Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment
    Capecci, Elisa
    Kasabov, Nikola
    Wang, Grace Y.
    NEURAL NETWORKS, 2015, 68 : 62 - 77
  • [32] An Energy-Efficient Spiking Neural Network Accelerator Based on Spatio-Temporal Redundancy Reduction
    Xie, Chenjia
    Shao, Zhuang
    Chen, Zhichao
    Du, Yuan
    Du, Li
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 32 (04) : 782 - 786
  • [33] An Event-based Categorization Model Using Spatio-temporal Features in a Spiking Neural Network
    Lu, Junwei
    Dong, Junfei
    Yan, Rui
    Tang, Huajin
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 385 - 390
  • [34] Spatio-Temporal Analysis of EEG Signal during Consciousness using Convolutional Neural Network
    Lee, Minji
    Yeom, Seul-Ki
    Baird, Benjamin
    Gosseries, Olivia
    Nieminen, Jakko O.
    Tononi, Giulio
    Lee, Seong-Whan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 31 - 33
  • [35] EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation
    Gao, Zhongke
    Wang, Xinmin
    Yang, Yuxuan
    Mu, Chaoxu
    Cai, Qing
    Dang, Weidong
    Zuo, Siyang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2755 - 2763
  • [36] Neural congestion prediction system for trip modelling in heterogeneous spatio-temporal patterns
    Elleuch, Wiam
    Wali, Ali
    Alimi, Adel M.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (08) : 1373 - 1391
  • [37] Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network
    Zhang, Yisa
    Lv, Hengyi
    Zhao, Yuchen
    Feng, Yang
    Liu, Hailong
    Bi, Guoling
    MICROMACHINES, 2023, 14 (01)
  • [38] Spatio-temporal modeling and analysis of fMRI data using NARX neural network
    Luo, Huaien
    Puthusserypady, Sadasivan
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 139 - 149
  • [39] Spatio-Temporal Data Fusion for Satellite Images Using Hopfield Neural Network
    Fung, Che Heng
    Wong, Man Sing
    Chan, P. W.
    REMOTE SENSING, 2019, 11 (18)
  • [40] A method for well log data generation based on a spatio-temporal neural network
    Wang, Jun
    Cao, Junxing
    You, Jiachun
    Cheng, Ming
    Zhou, Peng
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2021, 18 (05) : 700 - 711