Personalised Modelling on Integrated Clinical and EEG Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network System

被引:0
|
作者
Doborjeh, Maryam Gholami [1 ]
Kasabov, Nikola [1 ]
机构
[1] Auckland Univ Technol, Knowledge Engn & Discovery Res Inst, Auckland 1010, New Zealand
关键词
personalised modelling; spiking neural networks; NeuCube; spatiotemporal data; EEG data; opiate addict; methadone maintenance treatment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel personalised modelling framework and system for analysing Spatio-Temporal Brain Data (STBD) along with person clinical static data. For every individual, based on selected subset of similar to this individual clinical data, a subset of STBD is used for training a personalised Spiking Neural Network (PSNN) model using the recently proposed NeuCube SNN architecture. The proposed method is illustrated on a case study of personalised modelling using clinical and EEG data of two groups of subjects - drug addicts and addicts under medication. The PSNN models help to achieve a better classification accuracy compared to global SNN models or when using traditional AI methods. A PSNN model visualisation enables discovery of new knowledge about individual persons and to distinguish complex STBD across subjects.
引用
收藏
页码:1373 / 1378
页数:6
相关论文
共 50 条
  • [1] NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data
    Kasabov, Nikola K.
    NEURAL NETWORKS, 2014, 52 : 62 - 76
  • [2] Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a NeuCube Evolving Spiking Neural Network Model
    Doborjeh, Maryam Gholami
    Capecci, Elisa
    Kasabov, Nikola
    2014 IEEE SYMPOSIUM ON EVOLVING AND AUTONOMOUS LEARNING SYSTEMS (EALS), 2014, : 73 - 80
  • [3] Dynamic 3D Clustering of Spatio-Temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data
    Doborjeh, Maryam Gholami
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 191 - 198
  • [4] Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes
    Kasabov, Nikola
    Capecci, Elisa
    INFORMATION SCIENCES, 2015, 294 : 565 - 575
  • [5] Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data
    Kasabov, Nikola K.
    Tan, Yongyao
    Doborjeh, Maryam
    Tu, Enmei
    Yang, Jie
    Goh, Wilson
    Lee, Jimmy
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (12) : 4542 - 4552
  • [6] NeuCube(ST) for Spatio-Temporal Data Predictive Modelling with a Case Study on Ecological Data
    Tu, Enmei
    Kasabov, Nikola
    Othman, Muhaini
    Li, Yuxiao
    Worner, Susan
    Yang, Jie
    Jia, Zhenghong
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 638 - 645
  • [7] A feasibility study of using the neucube spiking neural network architecture for modelling Alzheimer’s disease EEG data
    20152400933645
    Capecci, Elisa, 2015, Springer Science and Business Media Deutschland GmbH (37):
  • [8] Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke
    Kasabov, Nikola
    Feigin, Valery
    Hou, Zeng-Guang
    Chen, Yixiong
    Liang, Linda
    Krishnamurthi, Rita
    Othman, Muhaini
    Parmar, Priya
    NEUROCOMPUTING, 2014, 134 : 269 - 279
  • [9] Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data
    Doborjeh, Zohreh Gholami
    Doborjeh, Maryam G.
    Kasabov, Nikola
    COGNITIVE COMPUTATION, 2018, 10 (01) : 35 - 48
  • [10] Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data
    Zohreh Gholami Doborjeh
    Maryam G. Doborjeh
    Nikola Kasabov
    Cognitive Computation, 2018, 10 : 35 - 48