Asymptotic stability and bifurcations of 3D piecewise smooth vector fields

被引:5
|
作者
Carvalho, Tiago [1 ]
Teixeira, Marco Antonio [2 ,3 ]
Tonon, Durval Jose [4 ]
机构
[1] UNESP, FC, BR-17033360 Bauru, SP, Brazil
[2] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[3] UFSCar Campus Sorocaba, BR-18052780 Sorocaba, SP, Brazil
[4] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Piecewise smooth vector fields; Cusp-fold singularity; Asymptotic stability; SINGULARITY;
D O I
10.1007/s00033-015-0603-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the analysis of the behavior of a nonsmooth three-dimensional vector field around a typal singularity. We focus on a class of generic one-parameter families Z(lambda) of Filippov systems and address the persistence problem for the asymptotic stability when the parameter varies near the bifurcation value lambda = 0.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Normal Forms for Codimension One Planar Piecewise Smooth Vector Fields
    de Carvalho, Tiago
    Tonon, Durval Jose
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (07):
  • [42] Limit Cycles on Piecewise Smooth Vector Fields with Coupled Rigid Centers
    Carvalho, Tiago
    Goncalves, Luiz Fernando
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (15):
  • [43] Structural Stability for 2-Dimensional Piecewise Smooth Vector Fields Where the Switching Manifold is a Double Discontinuity
    dos Santos, Mayk Joaquim
    Tonon, Durval Jose
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1775 - 1808
  • [44] Structural Stability for 2-Dimensional Piecewise Smooth Vector Fields Where the Switching Manifold is a Double Discontinuity
    Mayk Joaquim dos Santos
    Durval José Tonon
    Journal of Dynamical and Control Systems, 2023, 29 : 1775 - 1808
  • [45] On asymptotic stability in 3D of kinks for the φ4 model
    Cuccagna, Scipio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (05) : 2581 - 2614
  • [46] Asymptotic stability at infinity for differentiable vector fields of the plane
    Gutierrez, Carlos
    Pires, Benito
    Rabanal, Roland
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (01) : 165 - 181
  • [47] Asymptotic stability at infinity for bidimensional Hurwitz vector fields
    Rabanal, Roland
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (05) : 1050 - 1066
  • [48] An Illustrative Visualization Framework for 3D Vector Fields
    Chen, Cheng-Kai
    Yan, Shi
    Yu, Hongfeng
    Max, Nelson
    Ma, Kwan-Liu
    COMPUTER GRAPHICS FORUM, 2011, 30 (07) : 1941 - 1951
  • [49] The method of multipole fields for 3D vector tomography
    Balandin, A. L.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 203 - 218
  • [50] The Application of Lagrangian Descriptors to 3D Vector Fields
    Garcia-Garrido, Victor J.
    Curbelo, Jezabel
    Mancho, Ana M.
    Wiggins, Stephen
    Mechoso, Carlos R.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05): : 551 - 568