Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality

被引:199
|
作者
Briner, Alexandra E. [1 ]
Donohoue, Paul D. [2 ]
Gomaa, Ahmed A. [3 ,4 ]
Selle, Kurt [1 ]
Slorach, Euan M. [2 ]
Nye, Christopher H. [2 ]
Haurwitz, Rachel E. [2 ]
Beisel, Chase L. [3 ]
May, Andrew P. [2 ]
Barrangou, Rodolphe [1 ]
机构
[1] N Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27695 USA
[2] Caribou Biosci Inc, Berkeley, CA 94710 USA
[3] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[4] Cairo Univ, Fac Engn, Dept Chem Engn, Giza 12613, Egypt
基金
美国国家科学基金会;
关键词
DUAL-RNA; CRISPR; IMMUNITY; ENDONUCLEASE; EVOLUTION; COMPLEX;
D O I
10.1016/j.molcel.2014.09.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9: guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA: tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [21] Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
    Fonfara, Ines
    Le Rhun, Anais
    Chylinski, Krzysztof
    Makarova, Kira S.
    Lecrivain, Anne-Laure
    Bzdrenga, Janek
    Koonin, Eugene V.
    Charpentier, Emmanuelle
    NUCLEIC ACIDS RESEARCH, 2014, 42 (04) : 2577 - 2590
  • [22] Native Processing of Single Guide RNA Transcripts to Create Catalytic Cas9/Single Guide RNA Complexes in Planta
    Cody, Will B.
    Scholthof, Herman B.
    PLANT PHYSIOLOGY, 2020, 184 (02) : 1194 - 1206
  • [23] Cas9 deactivation with photocleavable guide RNAs
    Zou, Roger S.
    Liu, Yang
    Wu, Bin
    Ha, Taekjip
    MOLECULAR CELL, 2021, 81 (07) : 1553 - +
  • [24] Necessity for Validation of Effectiveness of Selected Guide RNA In Silico for Application of CRISPR/Cas9
    Dong-Hwan Kim
    Joonbum Lee
    Yeunsu Suh
    Kichoon Lee
    Molecular Biotechnology, 2021, 63 : 140 - 149
  • [25] Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii
    Jiang, Wenzhi
    Brueggeman, Andrew J.
    Horken, Kempton M.
    Plucinak, Thomas M.
    Weeks, Donald P.
    EUKARYOTIC CELL, 2014, 13 (11) : 1465 - 1469
  • [26] In Vitro Reconstitution and Crystallization of Cas9 Endonuclease Bound to a Guide RNA and a DNA Target
    Anders, Carolin
    Niewoehner, Ole
    Jinek, Martin
    STRUCTURES OF LARGE RNA MOLECULES AND THEIR COMPLEXES, 2015, 558 : 515 - 537
  • [27] Necessity for Validation of Effectiveness of Selected Guide RNA In Silico for Application of CRISPR/Cas9
    Kim, Dong-Hwan
    Lee, Joonbum
    Suh, Yeunsu
    Lee, Kichoon
    MOLECULAR BIOTECHNOLOGY, 2021, 63 (02) : 140 - 149
  • [28] Single-guide RNA Cas9 and enhanced-deletion Cas9 rescue a recurrent USH2A-related splicing defect
    De Angeli, Pietro
    Spaag, Salome
    Shliaga, Stefanida
    Flores-Tufino, Arturo
    Ritter, Malte
    Nasri, Masoud
    Stingl, Katarina
    Kuehlewein, Laura
    Wissinger, Bernd
    Kohl, Susanne
    MOLECULAR THERAPY NUCLEIC ACIDS, 2025, 36 (02):
  • [29] Controlling CRISPR–Cas9 activity
    Sarah Crunkhorn
    Nature Reviews Drug Discovery, 2019, 18 (7) : 500 - 500
  • [30] WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system
    Nathan Wong
    Weijun Liu
    Xiaowei Wang
    Genome Biology, 16