Study of Fluid Flow in Micro-channel based Devices

被引:1
|
作者
Saxena, Renuka [1 ]
Kumar, Shaliesh [1 ]
Gupta, Amita [1 ]
机构
[1] Solid State Phys Lab, Delhi 110054, India
关键词
Micro-channels; Fluid Flow; Reynolds number; friction factor;
D O I
10.1007/978-3-319-03002-9_101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microfluidic technology has contributed significantly to the advancement of Bio-MEMS, flow sensors, micromixers and heat sinks for chip cooling. Micro-channels play an important role in development of small scale fluid flow devices and are one of the essential parts of micromachined fluid systems. In addition to connecting different devices, micro-channels and micro-chambers are used in many other fields including biochemical, genetics, physics and industrial applications. In order to design micro-channel, it is very important to understand the mechanism and fundamental differences involved at micro scale fluid flow. This paper presents an analytical study of flow mechanism in micro channels, with a focus on effect of geometric dimensions and flow rate on the various micro-hydrodynamics parameters of trapezoidal shaped micro-channel. Pressure drop, friction-factor and Reynold number calculations for microchannel of different geometrical dimensions are presented. The channel width are in the range of 100 mu m to 1000 mu m, where as the depth of the channel is taken as 50 microns.Water is used as the working fluid. The study of entrance and exit effects on pressure drop across micro-channel has also been considered. The study provides vital information for design and analysis of micro-channel devices, and is helpful in selection of the possible channel configuration for a specific application.
引用
收藏
页码:405 / 407
页数:3
相关论文
共 50 条
  • [31] Experimental studies for the fluid flow and mixing under the action of electromagnetic force in the micro-channel
    Guo, Chun-Hai
    Tan, Jun-Jie
    Zhang, Yu-Cheng
    Shiyan Liuti Lixue/Journal of Experiments in Fluid Mechanics, 2012, 26 (05): : 1 - 6
  • [32] COMPARISON OF HEAT TRANSFER & FLUID FLOW IN THE MICRO-CHANNEL WITH RECTANGULAR AND HEXAGONAL CROSS SECTION
    Sajjad, Emami
    Mohammad, Hosein Dibaei Bonab
    Mohammad, Mohammadiun
    Hamid, Mohammadiun
    Maisam, Sadi
    ARCHIVES FOR TECHNICAL SCIENCES, 2019, (21): : 1 - 10
  • [33] Mathematical Study of Imposed Magnetic Field on Radiative Hydromagnetic Casson Fluid Flow in a Micro-Channel with Asymmetric Heating
    Venkateswarlu, M.
    Bhaskar, P.
    JOURNAL OF NANOFLUIDS, 2021, 10 (04) : 478 - 490
  • [34] Experimental and numerical study of evaporating flow heat transfer in micro-channel
    Lee, Hoki
    Richards, C. D.
    Richards, R. F.
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 11 PT A AND PT B: MICRO AND NANO SYSTEMS, 2008, : 447 - 455
  • [35] Flow boiling in a micro-channel coated with carbon nanotubes
    Khanikar, Vikash
    Mudawar, Issam
    Fisher, Timothy
    2008 11TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, VOLS 1-3, 2008, : 960 - +
  • [36] Numerical Simulations of Micro-Channel Devices with Lattice Boltzmann Method
    Timokhin, Maksim
    Tikhonov, Mikhail
    31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD31), 2019, 2132
  • [37] RESEARCH ON DIFFUSION IN MICRO-CHANNEL FLOW DRIVEN BY ELECTROOSMOSIS
    张凯
    林建忠
    李志华
    Applied Mathematics and Mechanics(English Edition), 2006, (05) : 575 - 582
  • [38] Bubble interaction of annular flow in micro-channel boiling
    Liu, Qingming
    Wang, Changhong
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2019, 101 : 76 - 81
  • [39] Bivelocity gas dynamics of micro-channel couette flow
    Walls, Peter L. L.
    Abedian, Behrouz
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 79 : 21 - 29
  • [40] Application of BGK scheme on micro-channel gas flow
    Sun, XM
    He, F
    Ding, YT
    CHINESE PHYSICS LETTERS, 2003, 20 (12) : 2199 - 2202