Thermostable Enzymes as Biocatalysts in the Biofuel Industry

被引:213
|
作者
Yeoman, Carl J. [1 ,4 ]
Han, Yejun [1 ,2 ]
Dodd, Dylan [1 ,2 ,3 ]
Schroeder, Charles M. [1 ,2 ,5 ,6 ]
Mackie, Roderick I. [1 ,2 ,4 ]
Cann, Isaac K. O. [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Energy Biosci Inst, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[5] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
关键词
ALPHA-L-ARABINOFURANOSIDASE; BACTERIUM THERMOTOGA-MARITIMA; BETA-D-XYLOSIDASE; STREPTOMYCES-THERMOVIOLACEUS OPC-520; CLOSTRIDIUM-THERMOCELLUM CELLULOSOME; THERMOPHILIC EUBACTERIUM THERMOTOGA; BACILLUS-THERMODENITRIFICANS TS-3; ARCHAEON SULFOLOBUS-SOLFATARICUS; THERMUS-NONPROTEOLYTICUS HG102; PROCESSIVE ENDOCELLULASE CELF;
D O I
10.1016/S0065-2164(10)70001-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lignocellulose is the most abundant carbohydrate source in nature and represents an ideal renewable energy source. Thermostable enzymes that hydrolyze lignocellulose to its component sugars have significant advantages for improving the conversion rate of biomass over their mesophilic counterparts. We review here the recent literature on the development and use of thermostable enzymes for the depolymerization of lignocellulosic feedstocks for biofuel production. Furthermore, we discuss the protein structure, mechanisms of thermostability, and specific strategies that can be used to improve the thermal stability of lignocellulosic biocatalysts.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 50 条
  • [21] Thermophiles and the applications of their enzymes as new biocatalysts
    Atalah, Joaquin
    Caceres-Moreno, Paulina
    Espina, Giannina
    Blamey, Jenny M.
    BIORESOURCE TECHNOLOGY, 2019, 280 : 478 - 488
  • [22] USES AND POTENTIALITIES OF THERMOSTABLE ENZYMES
    PARVARESH, F
    VIC, G
    THOMAS, D
    LEGOY, MD
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1990, 613 : 303 - 312
  • [23] Thermostable enzymes in lignocellulose hydrolysis
    Viikari, Liisa
    Alapuranen, Marika
    Puranen, Terhi
    Vehmaanperae, Jari
    Siika-aho, Matti
    BIOFUELS, 2007, 108 : 121 - 145
  • [24] THERMOSTABLE ENZYMES FOR INDUSTRIAL APPLICATIONS
    ZAMOST, BL
    NIELSEN, HK
    STARNES, RL
    JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1991, 8 (02): : 71 - 81
  • [25] THERMOSTABLE ENZYMES PRODUCE CYCLODEXTRINS
    SELTZER, R
    CHEMICAL & ENGINEERING NEWS, 1987, 65 (20) : 24 - &
  • [26] THERMOSTABLE ENZYMES FROM THERMOPHILES
    ZHANG, SZ
    YANG, SJ
    ZHOU, Y
    YAN, ZZ
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES-SERIES, 1992, 672 : 142 - 144
  • [27] Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: A critical review
    Ebaid, Reham
    Wang, Hongcheng
    Sha, Chong
    Abomohra, Abd El-Fatah
    Shao, Weilan
    JOURNAL OF CLEANER PRODUCTION, 2019, 238
  • [28] A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes
    Lalaoui, Noemie
    de Poulpiquet, Anne
    Haddad, Raoudha
    Le Goff, Alan
    Holzinger, Michael
    Gounel, Sebastien
    Mermoux, Michel
    Infossi, Pascale
    Mano, Nicolas
    Lojou, Elisabeth
    Cosnier, Serge
    CHEMICAL COMMUNICATIONS, 2015, 51 (35) : 7447 - 7450
  • [29] Computational Thermostable Cellulase Engineering for Enhanced Biofuel Production
    Lee, Toni
    Farrow, Mary
    Arnold, Frances
    Mayo, Stephen
    PROTEIN SCIENCE, 2012, 21 : 71 - 72
  • [30] Biofuel cell system employing thermostable glucose dehydrogenase
    Okuda-Shimazaki, Junko
    Kakehi, Noriko
    Yamazaki, Tomohiko
    Tomiyama, Masamitsu
    Sode, Koji
    BIOTECHNOLOGY LETTERS, 2008, 30 (10) : 1753 - 1758