Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations

被引:0
|
作者
Du, Qiang [1 ]
Wang, Xiaoqiang
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
numerical approximations; finite element; mixed finite element; phase field model; membrane deformation; elastic bending energy; gradient flow; convergence analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerical approximations of a recently proposed phase field model for the vesicle membrane deformations governed by the variation of the elastic bending energy. Both the spatial discretization for the equilibrium problem with given volume and surface area constraints and the time discretization of a dynamic problem via gradient flow are considered. Convergence results of the numerical approximations are proved.
引用
收藏
页码:441 / 459
页数:19
相关论文
共 50 条
  • [31] A phase-field fracture model based on strain gradient elasticity
    Makvandi, Resam
    Duczek, Sascha
    Juhre, Daniel
    ENGINEERING FRACTURE MECHANICS, 2019, 220
  • [32] Regularity and convergence results for a phase-field model with memory
    Bonfanti, G
    Luterotti, F
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1998, 21 (12) : 1085 - 1105
  • [33] A new magnetic-coupled Cahn-Hilliard phase-field model for diblock copolymers and its numerical approximations
    Zhang, Jun
    Yang, Xiaofeng
    APPLIED MATHEMATICS LETTERS, 2020, 107 (107)
  • [34] On the stress calculation within phase-field approaches: a model for finite deformations
    Schneider, Daniel
    Schwab, Felix
    Schoof, Ephraim
    Reiter, Andreas
    Herrmann, Christoph
    Selzer, Michael
    Boehlke, Thomas
    Nestler, Britta
    COMPUTATIONAL MECHANICS, 2017, 60 (02) : 203 - 217
  • [35] On the stress calculation within phase-field approaches: a model for finite deformations
    Daniel Schneider
    Felix Schwab
    Ephraim Schoof
    Andreas Reiter
    Christoph Herrmann
    Michael Selzer
    Thomas Böhlke
    Britta Nestler
    Computational Mechanics, 2017, 60 : 203 - 217
  • [36] Framework and Numerical Algorithm for a Phase Field Fracture Model
    Karthik, S.
    Nasedkina, A.
    Nasedkin, A.
    Rajagopal, A.
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (01) : 162 - 176
  • [37] A NUMERICAL-ANALYSIS OF AN ANISOTROPIC PHASE FIELD MODEL
    CAGINALP, G
    LIN, JT
    IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (01) : 51 - 66
  • [38] Phase-field model of bilipid membrane electroporation
    Jaramillo-Aguayo, Pedro
    Collin, Annabelle
    Poignard, Clair
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 87 (01)
  • [39] Curvature multiphase field model for phase separation on a membrane
    Varea, C.
    Barrio, R. A.
    Hernandez-Machado, A.
    PHYSICAL REVIEW E, 2011, 84 (06):
  • [40] Phase-field model of bilipid membrane electroporation
    Pedro Jaramillo-Aguayo
    Annabelle Collin
    Clair Poignard
    Journal of Mathematical Biology, 2023, 87