Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations

被引:0
|
作者
Du, Qiang [1 ]
Wang, Xiaoqiang
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
numerical approximations; finite element; mixed finite element; phase field model; membrane deformation; elastic bending energy; gradient flow; convergence analysis;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study numerical approximations of a recently proposed phase field model for the vesicle membrane deformations governed by the variation of the elastic bending energy. Both the spatial discretization for the equilibrium problem with given volume and surface area constraints and the time discretization of a dynamic problem via gradient flow are considered. Convergence results of the numerical approximations are proved.
引用
收藏
页码:441 / 459
页数:19
相关论文
共 50 条
  • [1] Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations
    Du, Qiang
    Zhang, Jian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03): : 1634 - 1657
  • [2] Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation
    Du, Qiang
    Zhu, Liyong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 265 - 280
  • [3] Convergence of equilibria for numerical approximations of a suspension model
    Valero, J.
    Gimenez, A.
    Kapustyan, O. V.
    Kasyanov, P. O.
    Amigo, J. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (04) : 856 - 878
  • [4] Numerical approximations to a new phase field model for two phase flows of complex fluids
    Zhao, Jia
    Wang, Qi
    Yang, Xiaofeng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 310 : 77 - 97
  • [5] Error estimates for approximations of a gradient dynamics for phase field elastic bending energy of vesicle membrane deformation
    Zhu, Liyong
    Du, Qiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (06) : 913 - 930
  • [6] Asymptotic analysis of phase field formulations of bending elasticity models
    Wang, Xiaoqiang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (05) : 1367 - 1401
  • [7] Convergence of phase-field approximations to the Gibbs–Thomson law
    Matthias Röger
    Yoshihiro Tonegawa
    Calculus of Variations and Partial Differential Equations, 2008, 32 : 111 - 136
  • [8] Convergence of Numerical Approximations for a Non-Newtonian Model of Suspensions
    Kapustyan, O. V.
    Valero, J.
    Kasyanov, P. O.
    Gimenez, A.
    Amigo, J. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14):
  • [9] Phase-inherent linear visco-elasticity model for infinitesimal deformations in the multiphase-field context
    Schwab F.K.
    Reiter A.
    Herrmann C.
    Schneider D.
    Nestler B.
    Advanced Modeling and Simulation in Engineering Sciences, 7 (1)
  • [10] Convergence of phase-field approximations to the Gibbs-Thomson law
    Roeger, Matthias
    Tonegawa, Yoshihiro
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (01) : 111 - 136