REAL TIME COMPRESSED VIDEO OBJECT SEGMENTATION

被引:1
|
作者
Tan, Zhentao [1 ]
Liu, Bin
Li, Weihai
Yu, Nenghai
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressed Domain; Object Segmentation; Feature Propagation;
D O I
10.1109/ICME.2019.00114
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Video object segmentation is a challenging task with wide variety of applications. Although recent CNN based methods have achieved great performance, they are far from being applicable for real time applications. In this paper, we propose a propagation based video object segmentation method in compressed domain to accelerate inference speed. We only extract features from I-frames by the traditional deep segmentation network. And the features of P-frames are propagated from I-frames. Apart from feature warping, we propose two effective modules in the process of feature propagation to ensure the representation ability of propagated features in terms of appearance and location. Residual supplement module is used to supplement appearance information lost in warping, and spatial attention module mines accurate spatial saliency prior to highlight the specified object. Compared with recent state-of-the-art algorithms, the proposed method achieves comparable accuracy while much faster inference speed.
引用
收藏
页码:628 / 633
页数:6
相关论文
共 50 条
  • [31] Focal-plane moving object segmentation for real-time video surveillance
    Lopez Vilarino, David
    Dudek, Piotr
    Cabello Ferrer, Diego
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 1600 - +
  • [32] Real-time object segmentation and coding for selective-quality video communications
    Challapali, K
    Brodsky, T
    Lin, YT
    Yan, Y
    Chen, RY
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2004, 14 (06) : 813 - 824
  • [33] Real-Time Object-Based Video Segmentation Using Colour Segmentation and Connected Component Labeling
    Jau, U. L.
    Teh, C. S.
    VISUAL INFORMATICS: BRIDGING RESEARCH AND PRACTICE, 2009, 5857 : 110 - 121
  • [34] Real-Time Polyps Segmentation for Colonoscopy Video Frames Using Compressed Fully Convolutional Network
    Wichakam, Itsara
    Panboonyuen, Teerapong
    Udomcharoenchaikit, Can
    Vateekul, Peerapon
    MULTIMEDIA MODELING, MMM 2018, PT I, 2018, 10704 : 393 - 404
  • [35] Real-time moving object detection and segmentation in H.264 video streams
    Konda, Krishna Reddy
    Tefera, Yonas Teodros
    Conci, Nicola
    De Natale, Francesco G. B.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2017, : 314 - 319
  • [36] MobileVOS: Real-Time Video Object Segmentation Contrastive Learning meets Knowledge Distillation
    Miles, Roy
    Yucel, Mehmet Kerim
    Manganelli, Bruno
    Saa-Garriga, Albert
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10480 - 10490
  • [37] REAL-TIME VIDEO OBJECT SEGMENTATION ALGORITHM BASED ON CHANGE DETECTION AND BACKGROUND UPDATING
    Chen, Tsong-Yi
    Chen, Thou-Ho
    Wang, Da-Jinn
    Chiou, Yung-Chuen
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (07): : 1797 - 1810
  • [38] Automatic Video Segmentation and Object Tracking with Real-Time RGB-D Data
    Chen, I-Kuei
    Hsu, Szu-Lu
    Chi, Chung-Yu
    Chen, Liang-Gee
    2014 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2014, : 488 - 489
  • [39] Real time temporal segmentation of MPEG video
    Bescós, J
    Movilla, A
    Menéndez, JM
    Cisneros, G
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 409 - 412
  • [40] Real-time moving object segmentation in H.264 compressed domain based on approximate reasoning
    Solana-Cipres, C.
    Fernandez-Escribano, G.
    Rodriguez-Benitez, L.
    Moreno-Garcia, J.
    Jimenez-Linares, L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 51 (01) : 99 - 114