Balanced partition of minimum spanning trees

被引:0
|
作者
Andersson, M
Gudmundsson, J
Levcopoulos, C
Narasimhan, G
机构
[1] Lund Univ, Dept Comp Sci, S-22100 Lund, Sweden
[2] Univ Utrecht, Dept Comp Sci, NL-3508 TB Utrecht, Netherlands
[3] Florida Int Univ, Sch Comp Sci, Miami, FL 33199 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To better handle situations where additional resources are available to carry out a task, many problems from the manufacturing industry involve "optimally" dividing a task into k smaller tasks. We consider the problem of partitioning a given set S of n points (in the plane) into k subsets, S-1, . . .,S-k, such that max(1less than or equal toiless than or equal tok)\MST(S-i)\ is minimized. A variant of this problem arises in the shipbuilding industry [2].
引用
收藏
页码:26 / 35
页数:10
相关论文
共 50 条
  • [41] On the Simultaneous Minimum Spanning Trees Problem
    Konecny, Matej
    Kucera, Stanislav
    Novotna, Jana
    Pekarek, Jakub
    Smolik, Martin
    Tetek, Jakub
    Topfer, Martin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 235 - 248
  • [42] Computing minimum spanning trees with uncertainty
    Erlebach, Thomas
    Hoffmann, Michael
    Krizanc, Danny
    Mihal'ak, Matus
    Raman, Rajeev
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 277 - +
  • [43] NOTE ON BISECTING MINIMUM SPANNING TREES
    BOYCE, WM
    GAREY, MR
    JOHNSON, DS
    NETWORKS, 1978, 8 (03) : 187 - 192
  • [44] RECENT DEVELOPMENTS ON MINIMUM SPANNING TREES
    YAO, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A597 - A597
  • [45] Minimum spanning trees and dissimilarity analysis
    Leclerc, B
    ORDINAL AND SYMBOLIC DATA ANALYSIS, 1996, : 215 - 224
  • [46] Balancing minimum spanning trees and multiple-source minimum routing cost spanning trees on metric graphs
    Lin, Chung-Ming
    Tsai, Yin Te
    Tang, Chuan Yi
    INFORMATION PROCESSING LETTERS, 2006, 99 (02) : 64 - 67
  • [47] Clustering, Community Partition and Disjoint Spanning Trees
    Zhang, Cun-Quan
    Ou, Yongbin
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (03)
  • [48] Balancing minimum spanning trees and shortest-path trees
    Khuller, S.
    Raghavachari, B.
    Young, N.
    Algorithmica (New York), 1995, 14 (04):
  • [49] On Family of Graphs with Minimum Number of Spanning Trees
    Zbigniew R. Bogdanowicz
    Graphs and Combinatorics, 2013, 29 : 1647 - 1652
  • [50] The minimum number of spanning trees in regular multigraphs
    Pekarek, Jakub
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):