A study of the construction of a large-scale water quality spatial database based on ArcSDE

被引:0
|
作者
Xu Shuna [1 ]
Yang Lingbin [2 ]
Zhang Xia [2 ]
Wu Jin [2 ]
机构
[1] XuChang Univ, Coll Urban Planning & Environm Sci, Xuchang 461000, Peoples R China
[2] Northeast Normal Univ, Coll Urban & Environm Sci, Changchun 130024, Peoples R China
关键词
ARCSDE; water quality; spatial database;
D O I
10.1109/DBTA.2009.118
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Taking into account of the rapid deterioration of water environment in China, as well as the complexity of water environment data, a new way has been proposed for the secure and efficient management of water environment information by using the powerful spatial data and non-spatial data seamless integration capabilities of ARCSDE. Firstly, a discussion has been made about the function, architecture and data storage mode of ARCSDE. Then on this basis,based on ARCSDE9.0+SQLServer2000 model, with the client by the secondary development of MO,constructing a large-scale water quality spatial database management system of Jinlin province. It has been proved by practice that the system is running well and perfect to meet the diverse needs of water quality management.
引用
收藏
页码:279 / +
页数:2
相关论文
共 50 条
  • [41] Improving the Quality of Large-Scale Database-Centric Software Systems by Analyzing Database Access Code
    Chen, Tse-Hsun
    Hassan, Ahmed E.
    2015 13TH IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW), 2015, : 245 - 249
  • [42] Large-scale Ising machine based on spatial light modulation
    Pierangeli, D.
    Marcucci, G.
    Conti, C.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [43] Attention Based Glaucoma Detection: A Large-scale Database and CNN Model
    Li, Liu
    Xu, Mai
    Wang, Xiaofei
    Jiang, Lai
    Liu, Hanruo
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10563 - 10572
  • [44] A global database of large-scale transverse drainages
    Lee, Jacqueline
    DATA IN BRIEF, 2019, 23
  • [45] A large-scale stream benthic diatom database
    Gosselain, W
    Coste, M
    Campeau, S
    Ector, L
    Fauville, C
    Delmas, F
    Knoflacher, M
    Licursi, M
    Rimet, F
    Tison, J
    Tudesque, L
    Descy, JP
    HYDROBIOLOGIA, 2005, 542 (1) : 151 - 163
  • [46] ImageNet: A Large-Scale Hierarchical Image Database
    Deng, Jia
    Dong, Wei
    Socher, Richard
    Li, Li-Jia
    Li, Kai
    Li Fei-Fei
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 248 - 255
  • [47] A large-scale protein-function database
    Rolf Apweiler
    Richard Armstrong
    Amos Bairoch
    Athel Cornish-Bowden
    Peter J Halling
    Jan-Hendrik S Hofmeyr
    Carsten Kettner
    Thomas S Leyh
    Johann Rohwer
    Dietmar Schomburg
    Christoph Steinbeck
    Keith Tipton
    Nature Chemical Biology, 2010, 6 : 785 - 785
  • [48] A large-scale protein-function database
    Apweiler, Rolf
    Armstrong, Richard
    Bairoch, Amos
    Cornish-Bowden, Athel
    Halling, Peter J.
    Hofmeyr, Jan-Hendrik S.
    Kettner, Carsten
    Leyh, Thomas S.
    Rohwer, Johann
    Schomburg, Dietmar
    Steinbeck, Christoph
    Tipton, Keith
    NATURE CHEMICAL BIOLOGY, 2010, 6 (11) : 785 - 785
  • [49] A large-scale stream benthic diatom database
    Véronique Gosselain
    Michel Coste
    Stéphane Campeau
    Luc Ector
    Claude Fauville
    François Delmas
    Markus Knoflacher
    Magdalena Licursi
    Frédéric Rimet
    Juliette Tison
    Loïc Tudesque
    Jean-Pierre Descy
    Hydrobiologia, 2005, 542 : 151 - 163
  • [50] A SIMULATION TOOL FOR A LARGE-SCALE NOSQL DATABASE
    Ovando-Leon, Gabriel
    Veas-Castillo, Luis
    Marin, Mauricio
    Gil-Costa, Veronica
    2019 SPRING SIMULATION CONFERENCE (SPRINGSIM), 2019,