Band selection in hyperspectral imagery using sparse support vector machines

被引:11
|
作者
Chepushtanova, Sofya [1 ]
Gittins, Christopher [2 ]
Kirby, Michael [1 ]
机构
[1] Colorado State Univ, Dept Math, 1874 Campus Delivery, Ft Collins, CO 80523 USA
[2] UTC Aerosp Syst, Westford, MA USA
来源
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX | 2014年 / 9088卷
基金
美国国家科学基金会;
关键词
Band selection; classification; sparse support vector machines; sparsity; bootstrap aggregating; hyperspectral imagery;
D O I
10.1117/12.2063812
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
hi tins paper we propose an l(1)-norm penalized sparse support vector machine (SSVM) as an embedded approach to the hyperspectral imagery band selection prohlem. SSVMs exhihit, a model structure that includes a dearly ifiable gap between zero mid non-zero weights that permits iniportant, bands to be definitively selected in conjunction with the classification problem. The SSVM Algorithm is trained using bootstrap aggregating to obtain a sample of SSVM models to reduce variability in the band selection process. This preliminary sample approach for hand selection is followed by a secondary hand selection which involves retraining the SSVM to further reduce the set of bands retained. We propose and compare three adaptations of the SSVM band selection algorithm for the multiclass problem. Two extensions of the SSVAI Algorithm are based on pairwise band selection between classes. Their performance is validated by using one-against-one (OAO) SSVMs. The third proposed method is a combination of the filter band selection method WaLuMI in sequence with the (0A0) SSVM embedded band selection algorithm. We illustrate the perfomance of these methods on the AVIRIS Indian Pines data set and compare the results to other techniques in the literature. Additionally we illustrate the SSVM Algorithm on the Long- Wavelength Infrared (LWIR) data set consisting of ltyperspectral videos of chentical plumes.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] DYNAMIC BAND SELECTION FOR HYPERSPECTRAL IMAGERY
    Liu, Keng-Hao
    Chang, Chein-I
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2365 - 2368
  • [22] A Band-Weighted Support Vector Machine Method for Hyperspectral Imagery Classification
    Sun, Weiwei
    Liu, Chun
    Xu, Yan
    Tian, Long
    Li, Weiyue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1710 - 1714
  • [23] Support vector machines for crop classification using hyperspectral date
    Camps-Valls, G
    Gómez-Chova, L
    Calpe-Maravilla, J
    Soria-Olivas, E
    Martín-Guerrero, JD
    Moreno, J
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2003, 2652 : 134 - 141
  • [24] Hyperspectral data classification using geostatistics and support vector machines
    Bahria, S.
    Essoussi, N.
    Limam, M.
    REMOTE SENSING LETTERS, 2011, 2 (02) : 99 - 106
  • [25] Algorithms for Sparse Support Vector Machines
    Landeros, Alfonso
    Lange, Kenneth
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1097 - 1108
  • [26] Mapping Bugweed (Solanum mauritianum) Infestations in Pinus patula Plantations Using Hyperspectral Imagery and Support Vector Machines
    Atkinson, Jonathan Tom
    Ismail, Riyad
    Robertson, Mark
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) : 17 - 28
  • [27] Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data
    Waske, Bjoern
    van der Linden, Sebastian
    Benediktsson, Jon Atli
    Rabe, Andreas
    Hostert, Patrick
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (07): : 2880 - 2889
  • [28] FEATURE SELECTION FOR HYPERSPECTRAL DATA BASED ON MODIFIED RECURSIVE SUPPORT VECTOR MACHINES
    Zhang, Rui
    Ma, Jianwen
    Chen, Xue
    Tong, Qingxi
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1098 - +
  • [29] Band selection based on band clustering for hyperspectral imagery
    Ge, Liang
    Wang, Bin
    Zhang, Liming
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2012, 24 (11): : 1447 - 1454
  • [30] Sparse approximation using least squares support vector machines
    Suykens, JAK
    Lukas, L
    Vandewalle, J
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL II: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 757 - 760