Coordinate Regulation of Stem Cell Competition by Slit-Robo and JAK-STAT Signaling in the Drosophila Testis

被引:43
|
作者
Stine, Rachel R. [1 ]
Greenspan, Leah J. [1 ]
Ramachandran, Kapil V. [1 ]
Matunis, Erika L. [1 ]
机构
[1] Johns Hopkins Univ Sch Med, Dept Cell Biol, Baltimore, MD 21287 USA
基金
美国国家卫生研究院;
关键词
ABL TYROSINE KINASE; SOMATIC SUPPORT CELLS; LONG-RANGE GUIDANCE; SELF-RENEWAL; BETA-CATENIN; AXON GUIDANCE; RECEPTORS SPECIFY; LATERAL POSITION; NICHE OCCUPANCY; GERMLINE;
D O I
10.1371/journal.pgen.1004713
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Jak-STAT regulation of cyst stem cell development in the Drosophila testis
    Sinden, D.
    Badgett, M.
    Fry, J.
    Jones, T.
    Palmen, R.
    Sheng, X.
    Simmons, A.
    Matunis, E.
    Wawersik, M.
    DEVELOPMENTAL BIOLOGY, 2012, 372 (01) : 5 - 16
  • [2] JAK-STAT Signal Inhibition Regulates Competition in the Drosophila Testis Stem Cell Niche
    Issigonis, Melanie
    Tulina, Natalia
    de Cuevas, Margaret
    Brawley, Crista
    Sandler, Laurel
    Matunis, Erika
    SCIENCE, 2009, 326 (5949) : 153 - 156
  • [3] Stem cell regulation by JAK/STAT signaling in Drosophila
    Gregory, Lorna
    Came, Paul J.
    Brown, Stephen
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2008, 19 (04) : 407 - 413
  • [4] Niche signaling promotes stem cell survival in the Drosophila testis via the JAK-STAT target DIAP1
    Hasan, Salman
    Hetie, Phylis
    Matunis, Erika L.
    DEVELOPMENTAL BIOLOGY, 2015, 404 (01) : 27 - 39
  • [5] Autocrine/juxtaparacrine regulation of axon fasciculation by Slit-Robo signaling
    Alexander Jaworski
    Marc Tessier-Lavigne
    Nature Neuroscience, 2012, 15 : 367 - 369
  • [6] Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling
    Tulina, N
    Matunis, E
    SCIENCE, 2001, 294 (5551) : 2546 - 2549
  • [7] Autocrine/juxtaparacrine regulation of axon fasciculation by Slit-Robo signaling
    Jaworski, Alexander
    Tessier-Lavigne, Marc
    NATURE NEUROSCIENCE, 2012, 15 (03) : 367 - 369
  • [8] Jak-STAT regulation of male germline stem cell establishment during Drosophila embryogenesis
    Sheng, X. Rebecca
    Posenau, Trevor
    Gumulak-Smith, Juliann J.
    Matunis, Erika
    Van Doren, Mark
    Wawersik, Matthew
    DEVELOPMENTAL BIOLOGY, 2009, 334 (02) : 335 - 344
  • [9] JAK-STAT Signaling in Stem Cells
    Stine, Rachel R.
    Matunis, Erika L.
    TRANSCRIPTIONAL AND TRANSLATIONAL REGULATION OF STEM CELLS, 2013, 786 : 247 - 267
  • [10] JAK-STAT signaling regulation of chicken embryonic stem cell differentiation into male germ cells
    Zhang, Yu
    Zhang, Lei
    Zuo, Qisheng
    Wang, Yinjie
    Zhang, Yani
    Xu, Qi
    Li, Bichun
    Chen, Guohong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2017, 53 (08) : 728 - 743