Fast Determination of the Composition of Pretreated Sugarcane Bagasse Using Near-Infrared Spectroscopy

被引:12
|
作者
Rodriguez-Zuniga, Ursula Fabiola [1 ,2 ]
Farinas, Cristiane Sanchez [2 ]
Carneiro, Renato Lajarim [3 ]
da Silva, Gislene Mota [1 ]
Goncalves Cruz, Antonio Jose [1 ]
Camargo Giordano, Raquel de Lima [1 ]
Giordano, Roberto de Campos [1 ]
de Arruda Ribeiro, Marcelo Perencin [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Chem Engn, BR-13565905 Sao Carlos, SP, Brazil
[2] Embrapa Instrumentat, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Near-infrared spectroscopy; Partial least squares; Pretreated sugarcane bagasse; Lignocellulose composition; REFLECTANCE; BIOMASS; COMPONENTS; LIGNIN; STRAW; WOOD;
D O I
10.1007/s12155-014-9488-7
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The chemical composition of pretreated sugarcane bagasse (SCB), in terms of cellulose, hemicellulose and lignin, was analyzed using a fast near-infrared spectroscopy (NIR) technique. Spectra of four types of SCB, prepared using ammonia, hydrothermal, organosolv, and sodium hydroxide pretreatments, were correlated with results of classical chemical analyses using partial least squares (PLS) regression. In a novel approach, isolation of the components used to prepare synthetic samples of SCB permitted assessment of their influence on the model. Inclusion of the synthetic samples did not improve the performance of the model, due to structural differences such as chemical bonding and physical interactions between the components. For natural pretreated samples, the PLS technique showed good predictive capacity in the ranges (%, w/w) of 47.2-89.4 (cellulose), 0.2-27.0 (hemicellulose), and 2.1-30.0 (lignin) with low root-mean-square error values of 4.1, 3.8, and 3.5, respectively, and coefficient of determination higher than 0.80, demonstrating the suitability of using different pretreated samples in the same calibration model.
引用
收藏
页码:1441 / 1453
页数:13
相关论文
共 50 条
  • [41] Determination of Sucrose Content in Soybean Using Near-infrared Reflectance Spectroscopy
    Choung, Myoung-Gun
    JOURNAL OF THE KOREAN SOCIETY FOR APPLIED BIOLOGICAL CHEMISTRY, 2010, 53 (04): : 478 - 484
  • [42] Determination of soybean routine quality parameters using near-infrared spectroscopy
    Zhu, Zhenying
    Chen, Shangbing
    Wu, Xueyou
    Xing, Changrui
    Yuan, Jian
    FOOD SCIENCE & NUTRITION, 2018, 6 (04): : 1109 - 1118
  • [43] Quantitative determination and classification of energy drinks using near-infrared spectroscopy
    Racz, Anita
    Heberger, Karoly
    Fodor, Marietta
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (23) : 6403 - 6411
  • [44] Quantitative Determination of Parameters of Substrate Using Near-Infrared Spectroscopy Technique
    Yu Yong-hua
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31 (11) : 2928 - 2931
  • [45] Determination of Sucrose Content in Soybean Using Near-infrared Reflectance Spectroscopy
    Myoung-Gun Choung
    Journal of the Korean Society for Applied Biological Chemistry, 2010, 53 (4): : 478 - 484
  • [46] Determination of camelina seed weight using near-infrared reflectance spectroscopy
    Vollmann, J
    Damboeck, A
    Kuyt, SJH
    Ruckenbauer, P
    PLANT VARIETIES AND SEEDS, 1997, 10 (02): : 95 - 101
  • [47] Comparing Calibration Algorithms for the Rapid Characterization of Pretreated Corn Stover Using Near-Infrared Spectroscopy
    Tillman, Zofia
    Wolfrum, Edward J.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [48] Fast identification of Echinacea purpurea dried roots using near-infrared spectroscopy
    Laasonen, M
    Harmia-Pulkkinen, T
    Simard, CL
    Michiels, E
    Räsänen, M
    Vuorela, H
    ANALYTICAL CHEMISTRY, 2002, 74 (11) : 2493 - 2499
  • [49] Near-infrared spectroscopy in saffron quality control:: Determination of chemical composition and geographical origin
    Zalacain, A
    Ordoudi, SA
    Díaz-Plaza, EM
    Carmona, M
    Blázquez, I
    Tsimidou, MZ
    Alonso, GL
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (24) : 9337 - 9341
  • [50] Microalgal fatty acid composition: rapid assessment using near-infrared spectroscopy
    Vineela Challagulla
    Kerry B. Walsh
    Phul Subedi
    Journal of Applied Phycology, 2016, 28 : 85 - 94