Construction of fuzzy membership functions using interactive self-organizing maps

被引:0
|
作者
Sandidge, TE [1 ]
Dagli, CH [1 ]
机构
[1] Univ Missouri, Smart Engn Syst Lab, Rolla, MO 65409 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a Kohonen-like mapping that eliminates or reduces four limitations of the Kohonen maps. The described network is invariant to scale, very resistant to "automatic selection of feature dimensions", results in strictly ordered clusters of ascending/descending magnitude, and may allow a greater amount of information to be gleaned from high dimensional data sets. The network treats each input component separately but each map is influenced via inter-map connections. Unfortunately, processing time increases combinatorially as the number of input components and number of neurons per component increases. As a demonstration, membership functions are constructed for a four variable data set with minimal parameter setting, the most crucial being the number of classes per input component.
引用
收藏
页码:282 / 286
页数:5
相关论文
共 50 条
  • [31] Shape indexing using self-organizing maps
    Suganthan, PN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (04): : 835 - 840
  • [32] Novelty detection using Self-Organizing Maps
    Ypma, A
    Duin, RPW
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1322 - 1325
  • [33] Color clustering using self-organizing maps
    Zhang, Xiao-Yu
    Chen, Jiu-Sheng
    Dong, Jian-Kang
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 986 - +
  • [34] Organizing spectral image database using Self-Organizing Maps
    Kohonen, O
    Jääskeläinen, T
    Hauta-Kasari, M
    Parkkinen, J
    Miyazawa, K
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2005, 49 (04) : 431 - 441
  • [35] A Causal Model Using Self-Organizing Maps
    Chung, Younjin
    Takatsuka, Masahiro
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 591 - 600
  • [36] Interactive image data labeling using self-organizing maps in an augmented reality scenario
    Bekel, H
    Heidemann, G
    Ritter, H
    NEURAL NETWORKS, 2005, 18 (5-6) : 566 - 574
  • [37] FMIG: Fuzzy Multilevel Interior Growing Self-Organizing Maps
    Tlili, Monia
    Ayadi, Thouraya
    Hamdani, Tarek M.
    Alimi, Adel M.
    2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, : 822 - 827
  • [38] Fuzzy optimized self-organizing maps and their application to document clustering
    Romero, Francisco P.
    Peralta, Arturo
    Soto, Andres
    Olivas, Jose A.
    Serrano-Guerrero, Jesus
    SOFT COMPUTING, 2010, 14 (08) : 857 - 867
  • [39] SOM of SOMs: Self-organizing map which maps a group of self-organizing maps
    Furukawa, T
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 391 - 396
  • [40] Tuning based on clustering and self-organizing maps for fuzzy equalization
    Figueroa, John
    Corrales, Diego
    INGENIERIA, 2006, 11 (01): : 68 - 74