On quantum twist maps and spectral properties of Floquet operators

被引:0
|
作者
Karner, G [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Ctr Math Phys, Blacksburg, VA 24061 USA
关键词
quantum twist maps; quasi-energies of kicked rotor; RAGE methods;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum twist maps an introduced as the representatives of "kicked" quantum systems in the Heisenberg picture and their orbit structures are related to the various spectral types of the corresponding Floquet operators U-V(T, 0). By means of geometrical RAGE methods a la Enss and Veselic sufficient conditions for the absence of sigma(ac)(U-V (T, 0)), respectively sigma(cont)(U-V(T, 0)) are derived, For the example of h(t) = -id/d theta + V (theta).Sigma(j) delta (t -jT), defined on L-1(S-1, d theta), the quasi-energy spectrum sigma(U-V (T, 0)) as well as the orbit structure of the twist map are determined for all V is an element of C-3 (S-1) in case of T/2 pi is an element of Q, respectively for T/2 pi an irrational number of constant type. (C) Elsevier, Paris.
引用
收藏
页码:139 / 157
页数:19
相关论文
共 50 条
  • [41] Maps that preserve the local spectral subspace of generalized product of operators
    Bouchangour, Mohammed
    Jaatit, Ali
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [42] Maps preserving local spectral subspaces of generalised product of operators
    Benbouziane, H.
    Bouramdane, Y.
    Ech-Cherif El Kettani, M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1033 - 1042
  • [43] Maps preserving local spectral subspaces of generalised product of operators
    H. Benbouziane
    Y. Bouramdane
    M. Ech-Chérif El Kettani
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1033 - 1042
  • [44] Maps preserving some spectral domains of Jordan product of operators
    Elhodaibi, Mhamed
    Saber, Somaya
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (34): : 621 - 634
  • [45] Quantum geometric maps and their properties
    Finocchiaro, Marco
    Jeong, Yoobin
    Oriti, Daniele
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (13)
  • [46] Spectral Properties of Interval Exchange Maps
    Juliana Chaves
    Arnaldo Nogueira
    Monatshefte für Mathematik, 2001, 134 : 89 - 102
  • [47] Geometric and spectral properties of causal maps
    Curien, Nicolas
    Hutchcroft, Tom
    Nachmias, Asaf
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (12) : 3997 - 4024
  • [48] Spectral properties of interval exchange maps
    Chaves, J
    Nogueira, A
    MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02): : 89 - 102
  • [49] Robust Spectral π Pairing in the Random-Field Floquet Quantum Ising Model
    Schmid, Harald
    Penner, Alexander -Georg
    Yang, Kang
    Glazman, Leonid
    von Oppen, Felix
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [50] Spectral properties of coupled wave operators
    Recke, L
    Schneider, KR
    Strygin, VV
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (06): : 925 - 933