Comparison of Different Dynamic Monte Carlo Methods for the Simulation of Olefin Polymerization

被引:11
|
作者
Brandao, Amanda L. T. [1 ]
Soares, Joao B. P. [2 ]
Pinto, Jose C. [1 ]
Alberton, Andre L. [3 ]
机构
[1] Univ Fed Rio de Janeiro, Programa Engn Quim COPPE, CP 68502, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[3] Univ Estado Rio de Janeiro, Inst Quim, BR-20550900 Rio De Janeiro, RJ, Brazil
关键词
Monte Carlo methods; polymer reaction engineering; polymerization modeling and simulation; CHEMICALLY REACTING SYSTEMS; EXACT STOCHASTIC SIMULATION; MOLECULAR-WEIGHT; COPOLYMERIZATION; DISTRIBUTIONS; POLYOLEFINS; EVOLUTION;
D O I
10.1002/masy.201500111
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, Monte Carlo methods were used to simulate olefin polymerization with coordination catalysts: the Direct method (DM), the First Reaction method (FRM), the Next Reaction method (NRM), and the t-Leaping method. The first three methods are exact stochastic simulation algorithms (SSA), while the t-Leaping is an approximate method with faster computation times. It is shown that all four methods predict similar polymer microstructures, but require significantly different computation times. The t-Leaping method is the fastest, being recommended when complex polymerization mechanisms are being investigated. The NRM, because of its intelligent data storage and handling approach, is the best among the SSA.
引用
收藏
页码:160 / 178
页数:19
相关论文
共 50 条
  • [31] Dynamic simulation of the Borstar® multistage olefin polymerization process
    Chatzidoukas, C
    Perkins, JD
    Pistikopoulos, EN
    Kiparissides, C
    EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 13, 2003, 14 : 593 - 598
  • [32] DYNAMIC MONTE-CARLO SIMULATION OF POLYCARBONATE
    KOTELYANSKII, MJ
    SUTER, UW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 294 - POLY
  • [33] Monte Carlo simulation of dynamic wedged fields
    Shih, R
    MEDICAL PHYSICS, 2000, 27 (12) : 2827 - 2827
  • [34] Dynamic Monte Carlo Simulation of Surface Recombination
    Kovalev, V. L.
    Sazonenko, V. Yu.
    Yakunchikov, A. N.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2007, 62 (02) : 53 - 58
  • [35] Monte Carlo Simulation of a Dynamic Sieve System
    Luo, X.
    Day, Chr.
    31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS (RGD31), 2019, 2132
  • [36] Dynamic percolation grid Monte Carlo simulation
    Altmann, Nara
    Halley, Peter J.
    Nicholson, Timothy M.
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2007, 19 (01) : 7 - 16
  • [37] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [38] AN OVERVIEW OF MONTE CARLO METHODS FOR FLUID SIMULATION
    Orkoulas, Gerassimos
    COMPUTING IN SCIENCE & ENGINEERING, 2009, 11 (05) : 76 - 87
  • [39] Comparison of different methods for fatigue limit evaluation by means of the Monte Carlo method
    Minak, Giangiacomo
    JOURNAL OF TESTING AND EVALUATION, 2007, 35 (02) : 126 - 133
  • [40] Monte Carlo simulation of photoinduced atom-transfer radical polymerization for dynamic microscopic properties
    Liu, Rui
    Lin, Xiaowen
    Chen, Xi
    Armaou, Antonios
    CHEMICAL ENGINEERING SCIENCE, 2023, 276