Inference after estimation of breaks

被引:4
|
作者
Andrews, Isaiah [1 ]
Kitagawa, Toru [2 ,3 ]
McCloskey, Adam [4 ]
机构
[1] Harvard Univ, Dept Econ, Cambridge, MA 02138 USA
[2] UCL, CeMMAP, London, England
[3] UCL, Dept Econ, London, England
[4] Univ Colorado, Dept Econ, Boulder, CO 80309 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Selective inference; Sample splitting; Structural breaks; Threshold regression; Misspecification; CONFIDENCE SETS; MODEL SELECTION; CHANGE-POINT; TESTS;
D O I
10.1016/j.jeconom.2020.07.036
中图分类号
F [经济];
学科分类号
02 ;
摘要
In an important class of econometric problems, researchers select a target parameter by maximizing the Euclidean norm of a data-dependent vector. Examples that can be cast into this frame include threshold regression models with estimated thresholds and structural break models with estimated break dates. Estimation and inference procedures that ignore the randomness of the target parameter can be severely biased and misleading when this randomness is non-negligible. This paper studies conditional and unconditional inference in such settings, accounting for the data-dependent choice of target parameters. We detail the construction of quantile-unbiased estimators and confidence sets with correct coverage, and prove their asymptotic validity under data generating process such that the target parameter remains random in the limit. We also provide a novel sample splitting approach that improves on conventional split-sample inference. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 50 条
  • [41] Estimation and inference in sets of Weibull samples
    McCool, John I.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2014, 228 (02) : 115 - 126
  • [42] Latent transition analysis: Inference and estimation
    Chung, Hwan
    Lanza, Stephanie T.
    Loken, Eric
    STATISTICS IN MEDICINE, 2008, 27 (11) : 1834 - 1854
  • [43] Estimation and inference under economic restrictions
    Christopher F. Parmeter
    Kai Sun
    Daniel J. Henderson
    Subal C. Kumbhakar
    Journal of Productivity Analysis, 2014, 41 : 111 - 129
  • [44] AUTOCORRELATION ESTIMATION AND INFERENCE WITH SMALL SAMPLES
    HUITEMA, BE
    MCKEAN, JW
    PSYCHOLOGICAL BULLETIN, 1991, 110 (02) : 291 - 304
  • [45] Computation and inference in semiparametric efficient estimation
    Adams, RM
    Berger, AN
    Sickles, RC
    COMPUTATIONAL APPROACHES TO ECONOMIC PROBLEMS, 1997, 6 : 57 - 70
  • [46] Local maximum likelihood estimation and inference
    Fan, JQ
    Farmen, M
    Gijbels, I
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 591 - 608
  • [47] ESTIMATION AND INFERENCE IN SPATIAL INTERACTION MODELS
    BAXTER, M
    PROGRESS IN HUMAN GEOGRAPHY, 1983, 7 (01) : 40 - 59
  • [48] Estimation and inference in multivariate Markov chains
    Nicolau, Joo
    Riedlinger, Flavio Ivo
    STATISTICAL PAPERS, 2015, 56 (04) : 1163 - 1173
  • [49] Estimation and inference for dependence in multivariate data
    Bodnar, Olha
    Bodnar, Taras
    Gupta, Arjun K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (04) : 869 - 881
  • [50] Assessing Sensitivity to Unconfoundedness: Estimation and Inference
    Masten, Matthew A. A.
    Poirier, Alexandre
    Zhang, Linqi
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 1 - 13