Inference after estimation of breaks

被引:4
|
作者
Andrews, Isaiah [1 ]
Kitagawa, Toru [2 ,3 ]
McCloskey, Adam [4 ]
机构
[1] Harvard Univ, Dept Econ, Cambridge, MA 02138 USA
[2] UCL, CeMMAP, London, England
[3] UCL, Dept Econ, London, England
[4] Univ Colorado, Dept Econ, Boulder, CO 80309 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Selective inference; Sample splitting; Structural breaks; Threshold regression; Misspecification; CONFIDENCE SETS; MODEL SELECTION; CHANGE-POINT; TESTS;
D O I
10.1016/j.jeconom.2020.07.036
中图分类号
F [经济];
学科分类号
02 ;
摘要
In an important class of econometric problems, researchers select a target parameter by maximizing the Euclidean norm of a data-dependent vector. Examples that can be cast into this frame include threshold regression models with estimated thresholds and structural break models with estimated break dates. Estimation and inference procedures that ignore the randomness of the target parameter can be severely biased and misleading when this randomness is non-negligible. This paper studies conditional and unconditional inference in such settings, accounting for the data-dependent choice of target parameters. We detail the construction of quantile-unbiased estimators and confidence sets with correct coverage, and prove their asymptotic validity under data generating process such that the target parameter remains random in the limit. We also provide a novel sample splitting approach that improves on conventional split-sample inference. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 50 条
  • [1] Nonparametric inference on structural breaks
    Delgado, MA
    Hidalgo, J
    JOURNAL OF ECONOMETRICS, 2000, 96 (01) : 113 - 144
  • [2] INFERENCE FOR STRUCTURAL BREAKS IN SPATIAL MODELS
    Chan, Ngai Hang
    Zhang, Rongmao
    Yau, Chun Yip
    STATISTICA SINICA, 2022, 32 : 1961 - 1981
  • [3] INFERENCE ON STRUCTURAL BREAKS USING INFORMATION CRITERIA
    Hall, Alastair R.
    Osborn, Denise R.
    Sakkas, Nikolaos
    MANCHESTER SCHOOL, 2013, 81 : 54 - 81
  • [4] Inference on locally ordered breaks in multiple regressions
    Li, Ye
    Perron, Pierre
    ECONOMETRIC REVIEWS, 2017, 36 (1-3) : 289 - 353
  • [5] CYPHONAUTES CILIARY SIEVE BREAKS A BIOLOGICAL RULE OF INFERENCE
    STRATHMANN, RR
    MCEDWARD, LR
    BIOLOGICAL BULLETIN, 1986, 171 (03): : 694 - 700
  • [6] Inference for a multiplicative volatility model allowing for structural breaks
    Sun, Yan
    Du, Xiaobin
    Zhang, Ying
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [7] Estimation of heterogeneous panels with structural breaks
    Baltagi, Badi H.
    Feng, Qu
    Kao, Chihwa
    JOURNAL OF ECONOMETRICS, 2016, 191 (01) : 176 - 195
  • [8] Selection of estimation window in the presence of breaks
    Pesaran, M. Hashem
    Timmermann, Allan
    JOURNAL OF ECONOMETRICS, 2007, 137 (01) : 134 - 161
  • [9] Estimation and forecasting in models with multiple breaks
    Koop, Gary
    Potter, Simon M.
    REVIEW OF ECONOMIC STUDIES, 2007, 74 (03): : 763 - 789
  • [10] Bayesian Inference: Parameter Estimation for Inference in Small Samples
    Baig, Sabeeh A.
    NICOTINE & TOBACCO RESEARCH, 2022, 24 (06) : 937 - 941