Classification of biological cells using bio-inspired descriptors

被引:0
|
作者
Ali, Wafa Bel Haj [1 ]
Giampaglia, Dario [1 ]
Barlaud, Michel [1 ]
Piro, Paolo [2 ]
Nock, Richard [3 ]
Pourcher, Thierry [4 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, Lab I3S, Nice, France
[2] Ist Italiano Tecnol, Genoa, Italy
[3] Univ Antilles Guyane, CEREGMIA, Martinique, France
[4] Univ Nice Sophia Antipolis, CEA, Nice, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel automated approach for the categorization of cells in fluorescence microscopy images. Our supervised classification method aims at recognizing patterns of unlabeled cells based on an annotated dataset. First, the cell images need to be indexed by encoding them in a feature space. For this purpose, we propose tailored bio-inspired features relying on the distribution of contrast information. Then, a supervised learning algorithm is proposed for classifying the cells. We carried out experiments on cellular images related to the diagnosis of autoimmune diseases, testing our classification method on the HEp-2 Cells dataset of Foggia et al (CBMS 2010). Results show classification precision larger than 96% on average, thus confirming promising application of our approach to the challenging application of cellular image classification for computer-aided diagnosis.
引用
收藏
页码:3353 / 3357
页数:5
相关论文
共 50 条
  • [31] Tracking and Classification of Features in the Bio-Inspired Layered Networks
    Ishii, Naohiro
    Iwata, Kazunori
    Mukai, Naoto
    Odagiri, Kazuya
    Matsuo, Tokuro
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2022, 2022, 13469 : 27 - 38
  • [32] Texture Classification of Proteins Using Support Vector Machines and Bio-inspired Metaheuristics
    Fernandez-Lozano, Carlos
    Seoane, Jose A.
    Mesejo, Pablo
    Nashed, Youssef S. G.
    Cagnoni, Stefano
    Dorado, Julian
    BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOSTEC 2013), 2014, 452 : 117 - 130
  • [33] Electroencephalogram (EEG) classification using a bio-inspired deep oscillatory neural network
    Ghosh, Sayan
    Chandrasekaran, Vigneswaran
    Rohan, N. R.
    Chakravarthy, V. Srinivasa
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [34] Live Demonstration: Image Classification Using Bio-inspired Spiking Neural Networks
    Kulkarni, Shruti R.
    Alexiades, John M.
    Rajendran, Bipin
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [35] Android Malware Classification Using Machine Learning and Bio-Inspired Optimisation Algorithms
    Pye, Jack
    Issac, Biju
    Aslam, Nauman
    Rafiq, Husnain
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1777 - 1782
  • [36] Cancer Data Classification using a Fuzzy Classifier Based on Bio-Inspired Algorithms
    Pirgazi, Lamshid
    Khanteymoori, Ali Reza
    Amiri, Ali
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [37] Feature Learning for Breast Tumour Classification Using Bio-Inspired Optimization Algorithms
    Abdel-Nasser, Mohamed
    Saleh, Adel
    Moreno, Antonio
    Saffari Tabalvandani, Nasibeh
    Puig, Domenec
    RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2017, 300 : 106 - 115
  • [38] ACADEMIC LEADERSHIP BIO-INSPIRED CLASSIFICATION MODEL USING NEGATIVE SELECTION ALGORITHM
    Jantan, Hamidah
    Sa'dan, Siti 'Aisyah
    Azemi, Nur Hamizah Syafiqah Che
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COMPUTING & INFORMATICS, 2015, : 706 - 712
  • [39] Bio-inspired photoelectrochemical cells for water splitting
    Moore, Ana L.
    Moore, Thomas A.
    Moore, Devens
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [40] Bio-inspired Bio-inspired computer vision based on neural networks
    Antón-Rodríguez M.
    González-Ortega D.
    Díaz-Pernas F.J.
    Martínez-Zarzuela M.
    de la Torre-Díez I.
    Boto-Giralda D.
    Díez-Higuera J.F.
    Pattern Recognition and Image Analysis, 2011, 21 (2) : 108 - 112