LifeCLEF 2022 Teaser: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction

被引:1
|
作者
Joly, Alexis [1 ]
Goeau, Herve [2 ]
Kahl, Stefan [6 ]
Picek, Lukas [10 ]
Lorieul, Titouan [1 ]
Cole, Elijah [9 ]
Deneu, Benjamin [1 ]
Servajean, Maximilien [7 ]
Durso, Andrew [11 ]
Bolon, Isabelle [8 ]
Glotin, Herve [3 ]
Planque, Robert [4 ]
Vellinga, Willem-Pier [4 ]
Klinck, Holger [6 ]
Denton, Tom [12 ]
Eggel, Ivan [5 ]
Bonnet, Pierre [2 ]
Muller, Henning [5 ]
Sulc, Milan [13 ]
机构
[1] Univ Montpellier, CNRS, LIRMM, INRIA, Montpellier, France
[2] CIRAD, UMR AMAP, Montpellier, Occitanie, France
[3] Univ Toulon & Var, Aix Marseille Univ, DYNI Team, LIS,CNRS, Marseille, France
[4] Xeno Canto Fdn, Amsterdam, Netherlands
[5] HES SO, Sierre, Switzerland
[6] Cornell Univ, KLYCCB, Cornell Lab Ornithol, Ithaca, NY USA
[7] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, AMIS,LIRMM, Montpellier, France
[8] UNIGE, Dept Community Hlth & Med, ISG, Geneva, Switzerland
[9] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[10] Univ West Bohemia, Dept Cybernet, FAV, Plzen, Czech Republic
[11] Florida Gulf Coast Univ, Dept Biol Sci, Ft Myers, FL USA
[12] Google LLC, San Francisco, CA USA
[13] Czech Tech Univ, Dept Cybernet, FEE, Prague, Czech Republic
来源
ADVANCES IN INFORMATION RETRIEVAL, PT II | 2022年 / 13186卷
关键词
RECOGNITION;
D O I
10.1007/978-3-030-99739-7_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants, animals and fungi is hindering the aggregation of new data and knowledge. Identifying and naming living organisms is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2022 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) P1antCLEF: very large-scale plant identification, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) SnakeCLEF: Snake Species Identification in Medically Important scenarios, and (v) FungiCLEF: Fungi recognition from images and metadata.
引用
收藏
页码:390 / 399
页数:10
相关论文
共 50 条
  • [21] Prospective Evaluation of a Machine-Learning Prediction Model for Missed Radiology Appointments
    Rothenberg, Steven
    Bame, Bill
    Herskovitz, Ed
    CANCER MANAGEMENT AND RESEARCH, 2022, 14 : 1690 - 1693
  • [22] Prospective Evaluation of a Machine-Learning Prediction Model for Missed Radiology Appointments
    Steven Rothenberg
    Bill Bame
    Ed Herskovitz
    Journal of Digital Imaging, 2022, 35 (6) : 1690 - 1693
  • [23] Machine learning for automatic identification of new minor species
    Schmidt, Frederic
    Mermy, Guillaume Cruz
    Erwin, Justin
    Robert, Severine
    Neary, Lori
    Thomas, Ian R.
    Daerden, Frank
    Ristic, Bojan
    Patel, Manish R.
    Bellucci, Giancarlo
    Lopez-Moreno, Jose-Juan
    Vandaele, Ann-Carine
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 259
  • [24] Applying Extreme Learning Machine to Plant Species Identification
    Zhai, Chuan-Min
    Du, Ji-Xiang
    2008 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-4, 2008, : 879 - 884
  • [25] A Machine-Learning Based Model for Identification of Prognostic Factors and Prediction of Graft Survival in Kidney Transplant Patients
    Kim, J.
    Jun, T.
    Jung, J.
    Ko, Y.
    Kwon, H.
    Kim, Y.
    Hwang, S.
    Shin, S.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2023, 23 (06) : S743 - S743
  • [26] Species determination using AI machine-learning algorithms: Hebeloma as a case study
    Peter Bartlett
    Ursula Eberhardt
    Nicole Schütz
    Henry J. Beker
    IMA Fungus, 13
  • [27] Species determination using AI machine-learning algorithms: Hebeloma as a case study
    Bartlett, Peter
    Eberhardt, Ursula
    Schuetz, Nicole
    Beker, Henry J.
    IMA FUNGUS, 2022, 13 (01)
  • [28] Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
    Artrith, Nongnuch
    Urban, Alexander
    Ceder, Gerbrand
    PHYSICAL REVIEW B, 2017, 96 (01)
  • [29] Machine-Learning Based Prediction Model for Prognosis of IgA Nephropathy Patients
    Park, Sehoon
    Koh, Eun Sil
    Baek, Chung Hee
    Kim, Yong Chul
    Lee, Jung Pyo
    Kim, Dong Ki
    Han, Seung Hyeok
    Chin, Ho Jun
    Joo, Kwon Wook
    Kim, Yon Su
    Lee, Hajeong
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 800 - 801
  • [30] Machine-learning based prediction of hydrogen/methane mixture solubility in brine
    Altalbawy, Farag M. A.
    Al-saray, Mustafa Jassim
    Vaghela, Krunal
    Nazarova, Nodira
    Praveen, Raja K. N.
    Kumari, Bharti
    Kaur, Kamaljeet
    Alsaadi, Salima B.
    Jumaa, Sally Salih
    Al-Ani, Ahmed Muzahem
    Al-Farouni, Mohammed
    Khalid, Ahmad
    SCIENTIFIC REPORTS, 2024, 14 (01):