LifeCLEF 2022 Teaser: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction

被引:1
|
作者
Joly, Alexis [1 ]
Goeau, Herve [2 ]
Kahl, Stefan [6 ]
Picek, Lukas [10 ]
Lorieul, Titouan [1 ]
Cole, Elijah [9 ]
Deneu, Benjamin [1 ]
Servajean, Maximilien [7 ]
Durso, Andrew [11 ]
Bolon, Isabelle [8 ]
Glotin, Herve [3 ]
Planque, Robert [4 ]
Vellinga, Willem-Pier [4 ]
Klinck, Holger [6 ]
Denton, Tom [12 ]
Eggel, Ivan [5 ]
Bonnet, Pierre [2 ]
Muller, Henning [5 ]
Sulc, Milan [13 ]
机构
[1] Univ Montpellier, CNRS, LIRMM, INRIA, Montpellier, France
[2] CIRAD, UMR AMAP, Montpellier, Occitanie, France
[3] Univ Toulon & Var, Aix Marseille Univ, DYNI Team, LIS,CNRS, Marseille, France
[4] Xeno Canto Fdn, Amsterdam, Netherlands
[5] HES SO, Sierre, Switzerland
[6] Cornell Univ, KLYCCB, Cornell Lab Ornithol, Ithaca, NY USA
[7] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, AMIS,LIRMM, Montpellier, France
[8] UNIGE, Dept Community Hlth & Med, ISG, Geneva, Switzerland
[9] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[10] Univ West Bohemia, Dept Cybernet, FAV, Plzen, Czech Republic
[11] Florida Gulf Coast Univ, Dept Biol Sci, Ft Myers, FL USA
[12] Google LLC, San Francisco, CA USA
[13] Czech Tech Univ, Dept Cybernet, FEE, Prague, Czech Republic
来源
关键词
RECOGNITION;
D O I
10.1007/978-3-030-99739-7_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants, animals and fungi is hindering the aggregation of new data and knowledge. Identifying and naming living organisms is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2022 edition proposes five data-oriented challenges related to the identification and prediction of biodiversity: (i) P1antCLEF: very large-scale plant identification, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction of species, (iv) SnakeCLEF: Snake Species Identification in Medically Important scenarios, and (v) FungiCLEF: Fungi recognition from images and metadata.
引用
收藏
页码:390 / 399
页数:10
相关论文
共 50 条
  • [1] Overview of LifeCLEF 2022: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction
    Joly, Alexis
    Goeau, Herve
    Kah, Stefan
    Picek, LukaS
    Lorieul, Titouan
    Cole, Elijah
    Deneu, Benjamin
    Servajean, Maximilien
    Durso, Andrew
    Glotin, Herve
    Planque, Robert
    Vellinga, Willem-Pier
    Navine, Amanda
    Klinck, Holger
    Denton, Tom
    Eggel, Ivan
    Bonnet, Pierre
    Sulc, Milan
    Hruz, Marek
    EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION (CLEF 2022), 2022, 13390 : 257 - 285
  • [2] LifeCLEF 2024 Teaser: Challenges on Species Distribution Prediction and Identification
    Joly, Alexis
    Picek, Lukas
    Kahl, Stefan
    Goeau, Herve
    Espitalier, Vincent
    Botella, Christophe
    Deneu, Benjamin
    Marcos, Diego
    Estopinan, Joaquim
    Leblanc, Cesar
    Larcher, Theo
    Sulc, Milan
    Hruz, Marek
    Servajean, Maximilien
    Matas, Jiri
    Glotin, Herve
    Planque, Robert
    Vellinga, Willem-Pier
    Klinck, Holger
    Denton, Tom
    Durso, Andrew M.
    Eggel, Ivan
    Bonnet, Pierre
    Mueller, Henning
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT VI, 2024, 14613 : 19 - 27
  • [3] LifeCLEF 2023 Teaser: Species Identification and Prediction Challenges
    Joly, Alexis
    Goeau, Herve
    Kahl, Stefan
    Picek, Lukas
    Botella, Christophe
    Marcos, Diego
    Sulac, Milan
    Hruz, Marek
    Lorieul, Titouan
    Moussi, Sara Si
    Servajean, Maximilien
    Kellenberger, Benjamin
    Cole, Elijah
    Durso, Andrew
    Glotin, Herve
    Planque, Robert
    Vellinga, Willem-Pier
    Klinck, Holger
    Denton, Tom
    Eggel, Ivan
    Bonnet, Pierre
    Muller, Henning
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III, 2023, 13982 : 568 - 576
  • [4] Overview of LifeCLEF 2024: Challenges on Species Distribution Prediction and Identification
    Joly, Alexis
    Picek, LukaS
    Kahl, Stefan
    Goeau, Herve
    Espitalier, Vincent
    Botella, Christophe
    Marcos, Diego
    Estopinan, Joaquim
    Leblanc, Cesar
    Larcher, Theo
    Sulc, Milan
    Hruz, Marek
    Servajean, Maximilien
    Glotin, Herve
    Planque, Robert
    Vellinga, Willem-Pier
    Klinck, Holger
    Denton, Tom
    Eggel, Ivan
    Bonnet, Pierre
    Muller, Henning
    EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION, PT II, CLEF 2024, 2024, 14959 : 183 - 207
  • [5] Spatial Evaluation of Machine Learning-Based Species Distribution Models for Prediction of Invasive Ant Species Distribution
    Lee, Wang-Hee
    Song, Jae-Woo
    Yoon, Sun-Hee
    Jung, Jae-Min
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [6] Microscopic identification of brazilian commercial wood species via machine-learning
    Moulin, Jordao Cabral
    Lopes, Dercilio Junior Verly
    Mulin, Lucas Braga
    Bobadilha, Gabrielly dos Santos
    Oliveira, Ramon Ferreira
    CERNE, 2022, 28
  • [7] Machine learning for image based species identification
    Waeldchen, Jana
    Maeder, Patrick
    METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (11): : 2216 - 2225
  • [8] Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models
    Benkendorf, Donald J.
    Schwartz, Samuel D.
    Cutler, D. Richard
    Hawkins, Charles P.
    ECOLOGICAL MODELLING, 2023, 483
  • [9] An Empirical Evaluation of Machine Learning Approaches for Species Identification Through Bioacoustics
    Zhang, Liang
    Saleh, Ibraheem
    Thapaliya, Sashi
    Louie, Jonathan
    Figueroa-Hernandez, Jose
    Ji, Hao
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 489 - 494
  • [10] Machine-learning prediction for quasiparton distribution function matrix elements
    Zhang, Rui
    Fan, Zhouyou
    Li, Ruizi
    Lin, Huey-Wen
    Yoon, Boram
    PHYSICAL REVIEW D, 2020, 101 (03)