Temperature sensing setup based on an aluminum coated Mach-Zehnder Interferometer

被引:1
|
作者
Pacheco-Chacon, Eliana I. [1 ]
Gallegos-Arellano, E. [2 ,3 ]
Sierra-Hernandez, Juan M. [1 ]
Rojas-Laguna, Roberto [1 ]
Estudillo-Ayala, Julian M. [1 ]
Hernandez, Emmanuel [1 ]
Jauregui-Vazquez, D. [1 ]
Hernandez-Garcia, J. C. [1 ]
机构
[1] Univ Guanajuato, Dept Ingn Elect, Campus Irapuato Salamanca,Carretera Salamanca, Salamanca 36885, Gto, Mexico
[2] Univ Tecnol Salamanca, Dept Ingn Mecatron, Av Univ Tecnol 200, Salamanca 36766, Gto, Mexico
[3] Univ Guanajuato, Dept Estudios Multidisciplinarios, Campus Irapuato Salamanca,Av Univ S-N, Yuriria 38940, Gto, Mexico
来源
OPTICAL SENSORS 2017 | 2017年 / 10231卷
关键词
Interferometry; Temperature Sensing; Optic Fiber Sensor; PHOTONIC CRYSTAL FIBER; REFRACTIVE-INDEX; SENSOR; SENSITIVITY; INTERFERENCE; PRESSURE; STRAIN;
D O I
10.1117/12.2265735
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper a temperature sensing setup based on a Photonic Crystal Fiber (PCF) Mach-Zehnder Interferometer (MZI), coated with aluminum is proposed. Here, this interferometer is fabricated through the concatenation of two sections of Single Mode Fiber (SMF) with a segment of PCF between them. The SMF-PCF joint acts as beam splitter causing the excitement of PCF's, both cladding and fundamental core modes. In the PCF-SMF union, the cladding modes couple again to the core of the SMF, and interfere with the fundamental core mode, this interaction results in an interference pattern spectrum. Moreover, the MZI was coated with aluminum, using the evaporation technique. By adding a thin metal layer to the PCF section, the general thermal coefficient of the structure changes, enhancing the sensitivity of the device. Experimental results show that a visibility of 13 dBm can be obtained and a sensitivity of 250 pm/degrees C. Finally, the proposed structure is simple, cost effective and easy to fabricate.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Edible oils sensing setup based on a core-offset Mach-Zehnder Interferometer with Single Mode Fiber
    Cuchimaque-Lugo, L. J.
    Castro-Lopez, R.
    Sosa-Morales, M. E.
    Sierra-Hernandez, J. M.
    Estudillo-Ayala, J. M.
    Jauregui-Vazquez, D.
    Hernandez-Garcia, J. C.
    Rojas-Laguna, R.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [22] Bragg Grating Embedded in Mach-Zehnder Interferometer for Refractive Index and Temperature Sensing
    Ahmed, Farid
    Ahsani, Vahid
    Saad, Akram
    Jun, Martin B. G.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (18) : 1968 - 1971
  • [23] Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity
    Jiang, L.
    Yang, J.
    Wang, S.
    Li, B.
    Wang, M.
    OPTICS LETTERS, 2011, 36 (19) : 3753 - 3755
  • [24] Mach-Zehnder interferometer and the teleporter
    Ralph, TC
    PHYSICAL REVIEW A, 2000, 61 (04): : 4 - 443014
  • [25] MACH-ZEHNDER HETERODYNE INTERFEROMETER
    LAVAN, MJ
    VANDAMME, GE
    CADWALLENDER, WK
    OPTICAL ENGINEERING, 1976, 15 (05) : 464 - 466
  • [26] ASTIGMATISM IN MACH-ZEHNDER INTERFEROMETER
    TANNER, LH
    HOWES, WL
    BUCHELE, DR
    PROWSE, DB
    APPLIED OPTICS, 1967, 6 (09): : 1583 - &
  • [27] ASTIGMATISM IN MACH-ZEHNDER INTERFEROMETER
    PROWSE, DB
    APPLIED OPTICS, 1967, 6 (04): : 773 - &
  • [28] THEORY OF THE MACH-ZEHNDER INTERFEROMETER
    BENNETT, FD
    KAHL, GD
    PHYSICAL REVIEW, 1952, 87 (01): : 234 - 234
  • [29] Temperature Measurement of Small Objects by Mach-Zehnder Interferometer
    Y.T.Wong
    W.K.Chin
    JournalofThermalScience, 1993, (04) : 270 - 274
  • [30] A mesoscopic Mach-Zehnder interferometer
    Ji, Y
    Chung, Y
    Sprinzak, D
    Portier, F
    Heiblum, M
    Decoherence, Entanglement and Information Protection in Complex Quantum Systems, 2005, 189 : 601 - 604